
Lab #2 - Introduction to C++
2.S998 Unmanned Marine Vehicle Autonomy, Sensing and Communications

1

2

Contents

1 Overview and Objectives 5

1.1 More C++ Resources . 5

1.2 What you will need to get started . 5

2 Structure of a Program 6

3 Command Line Arguments 7

4 Variables and Data Types 9

5 Control Structures 11

5.1 The if and else Structures . 11

5.2 The while-loop Structure . 11

5.3 The for-loop Structure . 12

6 Simple Classes 14

6.1 A simple class example (from the web site) . 14

6.2 Building your implementation over distinct files . 15

6.3 Constructors and Destructors . 16

7 Derived Classes 17

7.1 Polymorphism . 18

3

4

1 Overview and Objectives

This lab will introduce C and C++ to new users. It assumes nothing regarding C++ background,
but does assume some familiarity with basic programming concepts in other programming languages
such as for-loops, variable scope, conditional execution (if-then-else) for example.

1.1 More C++ Resources

We will only just touch the basics today. A couple further resources are worth mentioning for

following up this lab with your own self-guided C++ exploration.

Text book:

•	 The text book I recommend is Practical C++ Programming, Steve Oualline, O’Reilly Pub­
lishers, 2003.

Web sites:

•	 The www.cplusplus.com web site has a lot of resources. In particular there are a number of
good tutorials: http://www.cplusplus.com/doc/tutorial

•	 The standard template library has a number of useful tools ranging from basic tools that
we’ll use right out of the gate, like strings. Intermediate tools like vectors, maps, and sets.
The following is great resource: http://www.cplusplus.com/reference/stl

1.2 What you will need to get started

You will need a machine that has:

•	 A text editor such as Emacs, vi or some ability to edit text files.

•	 The C++ compiler installed. In this lab, we assume the compiler is the executable g++,
typically found at /usr/bin/g++. You may want to check that this is in your shell’s path.

5

http://www.cplusplus.com/doc/tutorial
www.cplusplus.com
http://www.cplusplus.com/reference/stl

2 Structure of a Program

In this exercise we will follow the example in Listing 1 below, which can also be found at the
URL listed at the top of the block. The web site is very good at explaining each component. I
recommend reading through the entire page explaining this example.

Your goals in this part are:

1. Open an editor and enter the code block in Listing 1.

Save the code in a file named hello.cpp.

2. Read through the explanation on the web site. (If you are new to C/C++, please do take
the time to read this through.)

3. Build the program into an executable.

On the command line do: g++ hello.cpp

This should generate a file called a.out

4. Verify that it runs by running it.

On the command line do: ./a.out

5. NOTE: For those still getting familiar with the command-line and shell paths, the "./" in
the above invocation is important. It tells your shell where to look for the executable a.out.
Normally the shell looks only in the set of directories in its path. By default, the present
working directory is not in the shell’s path. The notation "./" is shorthand for the present
working directory. The notation "../" refers to the directory above the present directory.
Try running "ls -a" and you will see that both "./" and "../" are listed.

6. Rather than building the cryptic a.out executable, try building it to have a more meaningful
name: g++ -o hello hello.cpp. Then you should be able to run the program with ./hello

Example Code 1.

0 // Code example from: http://www.cplusplus.com/doc/tutorial/program_structure/
1 // my first program in C++
2 #include <iostream>
3
4 using namespace std;
5
6 int main ()
7 {
8 cout << "Hello World!" << endl;
9 return 0;

10 }

6

3 Command Line Arguments

In this exercise we will expand on the first example by adding the ability to handle command line
arguments in our program. (This section does not correspond to a section on the cplusplus.com
tutorial site.) A command line argument is an argument passed to the program on the command
line. For example, it would be nice if our Hello World! program had the ability to accept an
alternative message on the command line. For example:

$./hello Greetings!

In the main() function, there is the option of having two arguments as shown in Listing 2.
The first argument is an integer, argc, indicating the number of command line arguments. The
program itself is always the first argument, so the smallest this number could be is one. The second
argument argv holds the actual values of all the command line arguments. (We’ll punt for now on
the notation char**, but in short it can be thought of as a pointer to an array of strings.) The first
argument is argv[0], the second argument, if it exists, is argv[1] and so on.

Your goals in this part are:

1. Open an editor and enter the code block in Listing 2.

Save the code in a file named hello arg.cpp.

2. Build the program into an executable.

On the command line do: g++ -o hello arg hello arg.cpp

This should generate a executable file called hello arg in the same directory.

3. TIP: when you do an "ls" in your terminal to see if the hello arg executable is there, try
doing "ls -F" instead. This will append an asterisk to all executables making it easier to
visually find what you’re looking for. In OS X, try "ls -FG" to add some color. If you like
this idea, consider making it the default for your shell, by putting alias ls ’ls -FG’ in
your .cshrc file or alias ls=’ls -FG’ in your .bashrc file if you’re a bash user.

4. Verify that it runs by running it.

On the command line do: ./hello arg.

5. Modify the program such that instead of the original output, it instead outputs a custom
greeting. Your program should respond as follows

$./hello_arg Greetings!

$ Greetings!

7

http:cplusplus.com

1

2

3

4

5

6

7

8

9

10

11

Example Code 2.

// Handling command line arguments

#include <iostream>

using namespace std;

int main (int argc, char **argv)

{

cout << "Total number of arguments: " << argc << endl;

cout << "The first argument is: " << argv[0] << endl;

return 0;

}

8

4 Variables and Data Types

In this exercise we will follow the example in Listing 3 below, which can also be found at the URL
listed at the top of the block. The web site discusses C++ variable names, fundamental variable
types, and variable declarations. Later on we will be creating our own ”types” in the form of C++
classes, but a good understanding of the C/C++ fundamental types is important. Take the time
to read through this web page.

Your goals in this part are:

1. Open an editor and enter the code block in Listing 3.

Save the code in a file named var types.cpp.

2. Build the program into an executable.

On the command line do: g++ -o var types var types.cpp

This should generate a executable file called var types in the same directory.

3. Verify that it runs by running it.

On the command line do: ./var types

4. Modify the program such that instead of assigning and processing the results as done in lines
12-16, we instead grab two variables from the command line, add them, and output the result.

Save your modified program in a file with a different name such as: var types cmd.cpp

To do this you will need to do two things. First you will need to include a library, for
converting ASCII strings to numbers, near the top of the program, #include <cstdlib>.
Next you will need to invoke the atoi() function to convert the string to an integer. This
snippet shows the general idea:

#include <cstdlib>

....

int a;

a = atoi(argv[1]);

5. Verify that your program works by running on the command line:

$./var_types_cmd 12 44

$ 56

6. Repeat the above two steps, but in this case the goal is to handle floating point numbers. You
will need to declare your variables as the type float, and invoke the atof function instead.

7. TIP: You can read more about the atof and atoi functions by typing "man atoi" on the
command line.

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Example Code 3.

0	 // Code example from: http://www.cplusplus.com/doc/tutorial/variables/

// operating with variables

#include <iostream>

using namespace std;

int main ()

{

// declaring variables:

int a, b;

int result;

// process:

a = 5;

b = 2;

a = a + 1;

result = a - b;

// print out the result:

cout << result << endl;

// terminate the program:

return 0;

}

10

http://www.cplusplus.com/doc/tutorial/variables

5 Control Structures

In this exercise we will begin using the three most common control structures found in C++, the
if-else, while-loop, and for-loop constructs. The idea, if not the C++ syntax, should be familiar
to those with experience in other programming languages. In this section we will be following the
topic described at the cplusplus.com tutorial page:

http://www.cplusplus.com/doc/tutorial/control/

This lab exercise will have three sub-parts, for each of the control structures, if-else, while-loop,
and for-loop.

5.1 The if and else Structures

In the first part, your goals are:

1. Read through the first part of the web tutorial on the conditional structure, namely the if
and else structure.

2. We’re going to make a modified copy of the program you created in Section 4 in Step 4,
the program var types cmd.cpp. Start by making a copy of this file and renaming it to
add nums.cpp

$ cp var_types_cmd.cpp add_nums.cpp

3. In the original version of this program the two numbers being added were taken from the
command line, argv[1], and argv[2]. If these arguments were not provided, this could
result in a segmentation fault (program crash) since argv[2] doesn’t exist unless provided.
In this step, use the condition structure to check for the number of arguments. If the wrong
number of arguments is provided, output a warning message, otherwise handle the addition
and output as normal.

4. Verify that your program works by running on the command line. It should look something
like:

$./add_nums 3 8

11

$./add_nums 38

please provide exactly two arguments.

5.2 The while-loop Structure

In the second part, your goals are:

1. Read through the second part of the web tutorial on the Iteration structures (loops), namely
the while loop structure.

2. Open an editor and enter the code block in Listing 4. (cut-paste from the web site)

Save the code in a file named countdown.cpp.

11

http:cplusplus.com
http://www.cplusplus.com/doc/tutorial/control/

3. Build the program into an executable.
On the command line do: g++ -o countdown countdown.cpp
This should generate a executable file called countdown in the same directory.

4. Verify that it runs by running it.
On the command line do: ./countdown.

5. Modify the program such that instead of accepting a single number from the user, it repeatedly
accepts a number, checks whether it is even or odd, outputs the result, and quits when the
first even number is provided.

Save your modified program in a file with a different name such as: even odd.cpp

HINT: You may want to use the C++ modulus operator, e.g., (7%2) = 1, (17%3) = 2.

6. Verify that your program works by running on the command line. It should look something
like:

$./even_odd

Enter a number: 3

The number 3 is odd

Enter a number: 19

The number 19 is odd

Enter a number: 2

The number 2 is even. Goodbye!

Example Code 4.

0 // Code example from: http://www.cplusplus.com/doc/tutorial/control/

1 // custom countdown using while

2

3 #include <iostream>

4 using namespace std;

5

6 int main ()

7 {

8 int n;

9 cout << "Enter the starting number > ";

10 cin >> n;

11

12 while (n>0) {

13 cout << n << ", ";

14 --n;

15 }

16

17 cout << "FIRE!\n";

18 return 0;

19 }

5.3 The for-loop Structure

In the third part, your goals are:

1. Read through the second part of the web tutorial on the Iteration structures (loops), namely
the for-loop structure.

12

http://www.cplusplus.com/doc/tutorial/control

2. Open an editor and enter the code block in Listing 5. (cut-paste from the web site)
Save the code in a file named for countdown.cpp.

3. Build the program into an executable.
On the command line do: g++ -o for countdown for countdown.cpp
This should generate a executable file called for countdown in the same directory.

4. Verify that it runs by running it.
On the command line do: ./for countdown.

5. Modify the program such that it accepts two integers from the command line from the user,
and outputs all multiplication combinations between the two numbers ranging from [0, N] for
each number.

Save your modified program in a file with a different name such as: forloop mult.cpp

6. Verify that your program works by running on the command line. It should look something
like:

$./forloop_mult 10 10

0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10

0 2 4 6 8 10 12 14 16 18 20

0 3 6 9 12 15 18 21 24 27 30

0 4 8 12 16 20 24 28 32 36 40

0 5 10 15 20 25 30 35 40 45 50

0 6 12 18 24 30 36 42 48 54 60

0 7 14 21 28 35 42 49 56 63 70

0 8 16 24 32 40 48 56 64 72 80

0 9 18 27 36 45 54 63 72 81 90

0 10 20 30 40 50 60 70 80 90 100

Example Code 5.

0 // Code example from: http://www.cplusplus.com/doc/tutorial/control/

1 // countdown using a for loop

2 #include <iostream>

3 using namespace std;

4 int main ()

5 {

6 for (int n=10; n>0; n--) {

7 cout << n << ", ";

8 }

9 cout << "FIRE!\n";

10 return 0;

11 }

13

http://www.cplusplus.com/doc/tutorial/control

6 Simple Classes

In this exercise we will begin using C++ classes. Everything prior to this section in today’s lab
is really in the domain of the C programming language. The use of classes, or more precisely
the objects which are instances of classes, is what makes C++ an ”object-oriented programming
language”. In this section we will be following the topic described at the cplusplus.com tutorial
page:

http://www.cplusplus.com/doc/tutorial/classes/

This lab exercise will have two sub-parts, (a) building and modifying the example class on the web
site, (b) implementing your class and program in separate files.

6.1 A simple class example (from the web site)

In the first part, your goals are:

1. Read through the first part of the web tutorial on Classes(I) at
http://www.cplusplus.com/doc/tutorial/classes/

2. Open an editor and enter the code block in Listing 6.

Save the code in a file named simple rect.cpp.

3. Build the program into an executable.

On the command line do: g++ -o simple rect simple rect.cpp

This should generate a executable file called simple rect in the same directory.

4. Verify that it runs by running it.

On the command line do: ./simple rect.

5. Prepare to make a modified version of this program by copying the file simple rect.cpp to
my rect.cpp

6. Modify the program in following three ways: (1) In addition the x, and y member variables,
add a member variable of type string indicating the rectangle color. You will need to include
the string library, #include <string>. (2) In addition to the set values member function, add
another member function for setting the rectangle color. It will take single (string) argument.
(3) Add yet another member function called print() taking no arguments, but writes the
area of the rectangle and color to the terminal using cout.

7. Modify your main() function to give the rectangle a color, and use the print() function instead
of the original call to cout to convey the rectangle properties.

8. Build your program: g++ -o my rect my rect.cpp. Verify that your program works by running
on the command line. It should look something like:

$./my_rect

area: 12x

color: yellow

14

http:cplusplus.com
http://www.cplusplus.com/doc/tutorial/classes/
http://www.cplusplus.com/doc/tutorial/classes/

Example Code 6.

0 // Code example from: http://www.cplusplus.com/doc/tutorial/classes/

1 // classes example

2 #include <iostream>

3 using namespace std;

4

5 class CRectangle {

6 int x, y;

7
 public:

8 void set_values (int,int);

9 int area () {return (x*y);}

10 };

11

12 void CRectangle::set_values (int a, int b) {

13 x = a;

14 y = b;

15 }

16

17 int main () {

18 CRectangle rect;

19 rect.set_values (3,4);

20 cout << "area: " << rect.area() << endl;

21 return 0;

22 }

6.2 Building your implementation over distinct files

One of the nice things about C++ is that objects (classes), once defined and implemented, may
be used in many programs. In the example implemented above, instances of the CRectangle class
could only be used in that particular program. By splitting out the class definition and class
implementation into separate files, objects of that class may be used multiple programs.

In this next part, your goals are:

1. Open an editor and enter the code blocks in Listing 7 into three distinct files named as

indicated on the first line in each block.

2. Build the program into an executable.
On the command line do: g++ -o distributed rect CRectangle.cpp distributed rect main.cpp
This should generate a executable file called distributed rect in the same directory.

3. Verify that it runs by running it.

On the command line do: ./distributed
 rect.

15

http://www.cplusplus.com/doc/tutorial/classes

Example Code 7.

0
1
2
2
3
4
5
6
7
8
9

10

// distributed_rect_main.cpp

#include <iostream>
#include "CRectangle.h"
using namespace std;

int main () {
CRectangle rect;
rect.set_values (3,4);
cout << "area: " << rect.area()
return 0;

}

<< endl;

0
1
5
6
7
8
9

10

// CRectangle.h

class CRectangle {
int x, y;

public:
void set_values (int,int);
int area () {return (x*y);};

};

0 // CRectangle.cpp

1

2 #include "CRectangle.h"

3 using namespace std;

4

5 void CRectangle::set_values (int a, int b) {

6 x = a;

7 y = b;

8 }

6.3 Constructors and Destructors

We won’t have time to work through examples on different ways to implement your class’ construc­
tor(s) or destructor(s). Minimally you need to understand that they are functions that are called
automatically when an instance of a class is created (constructor) and when it is destroyed or goes
out of scope (destructor).

Be sure to at least read the explanation on this topic in the latter part of the web page:

http://www.cplusplus.com/doc/tutorial/classes/

16

http://www.cplusplus.com/doc/tutorial/classes/

7 Derived Classes

An important feature of C++ over C is the ability to define classes in a hierarchical structure.
Subclasses of a class may be defined that inherit (or override) properties of its parent class. This has
enormous utility with respect to the goal of ”code re-use”. Class inheritance is what enables MOOS
applications and IvPHelm behaviors to be written from a general MOOSApp and IvPBehavior
superclass.

In this exercise we will explore the use of class inheritance with a simple example. Readers should
regard this as a launching point to explore further the details of C++. If you’ve gotten this far and
through this exercise in today’s lab, you have a fighting chance to understand the autonomy specific
code used in this course. However, we recommend you keep going with your C++ exploration in
this course. It is an essential, and very empowering language in marine robotics.

In this section we will be following the topic described at the cplusplus.com tutorial page:

http://www.cplusplus.com/doc/tutorial/inheritance/

In the exercise, your goals are:

1. Read through the first part of the web tutorial on Friendship and Inheritance at
http://www.cplusplus.com/doc/tutorial/classes/

While the notion of class friendship is useful, it is not our focus here. I recommend skimming
this material for now.

2. Open an editor and enter the code block in Listing 8.

Save the code in a file named derived.cpp.

3. Build the program into an executable.

On the command line do: g++ -o derived derived.cpp

This should generate a executable file called derived in the same directory.

4. Verify that it runs by running it.

On the command line do: ./derived.

5. Prepare to make a modified version of this program by copying the file derived.cpp to
diamond.cpp

6. Modify the program by adding a new derived class called CDiamond, and implement its area()
function accordingly. Add the use of the CDiamond class to the main() function.

7. Build your program: g++ -o diamond diamond.cpp. Verify that your program works by run­
ning on the command line. It should look something like:

$./diamond

20

10

5

17

http://www.cplusplus.com/doc/tutorial/inheritance/
http://www.cplusplus.com/doc/tutorial/classes/

Example Code 8.

0 // Code example from: http://www.cplusplus.com/doc/tutorial/inheritance/

1 // derived classes

2 #include <iostream>

3 using namespace std;

4

5 class CPolygon {

6
 protected:

7
 int width, height;

8 public:

9 void set_values (int a, int b)

10 { width=a; height=b;}

11 };

12

13 class CRectangle: public CPolygon {

14 public:

15 int area ()

16 { return (width * height); }

17 };

18

19 class CTriangle: public CPolygon {

20 public:

21 int area ()

22 { return (width * height / 2); }

23 };

24

25 int main () {

26 CRectangle rect;

27 CTriangle trgl;

28 rect.set_values (4,5);

29 trgl.set_values (4,5);

30 cout << rect.area() << endl;

31 cout << trgl.area() << endl;

32 return 0;

33 }

7.1 Polymorphism

If you have time still in this lab, explore the issue of polymorphism discussed at:

http://www.cplusplus.com/doc/tutorial/polymorphism/

In particular, focus on the issue of virtual members and abstract base classes. Try to re-work
the Polygon example above by defining area() as a virtual function as discussed on the web
site. See if you can learn the difference between a "virtual function" and a "pure virtual
function". Should the area() function for the CPolygon class above be "virtual function" or a
"pure virtual function"? Why? If if the former, what would be a reasonable implementation?

18

http://www.cplusplus.com/doc/tutorial/inheritance
http://www.cplusplus.com/doc/tutorial/polymorphism/

MIT OpenCourseWare
http://ocw.mit.edu

2.S998 Marine Autonomy, Sensing and Communications
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

