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1 Overview and Objectives 

Figure 1: Ocean Front Estimation: An autonomous vehicle with a temperature sensor is used to estimate the 
dynamic properties of an ocean front, separating two water bodies of difdferent temperatures, indicated by the 
color shading. The front is dynamic, and the objective is to estimate the parameters in an analytical model of the 
temperature versus time and location 

In the previous labs we have focused on remote sensing techniques for detecting, classifying and 
locating (DLT) seabed hazards. Another common application of autonomous vehicles involves the 
measurement of oceanographic properties using physical, chemical or biological sensors mounted on 
the vehicles. For this problem the sensors provide point measurements at the locaion of the AUV. 
A common problem in coastal oceanography is the spatial and temporal characterization of a front 
separating water masses of different temperature, as shown in Fig. 1. Only in a few pathological 
cases the front will be stationary in space and time, and in general the measurements will have 
to support the estimation of the dynamic properties of the front. This problem is complicated 
by the space-time aliasing inherent to the sampling of a dynamic field by a point sensor with 
finite mobility. In other word, an AUV with a temperature sensor does not provide a synoptic 
measurement of the temperature field, and a change observed between two measurements may not 
be directly assocoiated with a spatial or a temporal change. 

To break this ambiguity one must in general apply a parametric model of the oceanographic 
phenomenon, and then design a survey which provides a reliable estimate of the parameters. This 
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approach first of all requires that the model makes sense physically, and the most robust approach is 
to choose a model which is consistent with the physics of the problem. A suite of such oceanographic 
models exist, but their use is beyond the scope of this class. Instead we will use an analytical model 
for the temperature field, but the principle of the oceanographic sampling problem are the same. 
Thus the survey selected for the measurements by the AUV must be chosen in such a way that the 
measurements provide an estimate which is unambiguous in space and time. This in general is a 
complex problem with no unique solution, but some general guidelines exist for the survey: 

•	 The survey must focus on the areas that provide the most information about the model 
parameters, in general translating into a strategy of concentrating the survey in areas of 
strong gradients. 

•	 While focusing most effort in areas of strong variability, the geographical region of interest 
must be adequately covered. 

•	 The survey should be designed to optimally uncouple the parameters, i.e. avoid patterns 
which provide information that is ambiguous in the parameters. 

1.1 Structure of the Lab and Goals 

This lab with stretch over four lab sessions. In the first session, you will use a scripted lawnmower 
survey to collect the data for the parameter estimation, and use it to develop an understanding of 
the coupling between the model parameters and the effects of changes in the survey design. 

In the next part, the goal will be to write a couple of intermediate simple behaviors. In the 
final part you will, based on the experience gained in the first parts, design your own IvP behavior 
for estimating the model parameters in the shortest amount of time. 

You will be provided a MOOS module for performing the parameter estimation using simulated 
annealing, but you have to select the control parameters for the algorithm, most importantly those 
controlling the ’cooling’ schedule. You will be able to modify the front model as you see fit to test 
your behavior. 

During the last lab session, we will run a blind test of your algorithm and behavior, where 
we control the front simulator and your vehicle will have to perform its survey and determine a 
parameter estimate. The grading will be based on a score that is inversely proportional to the 
parameter estimation error and the time for the survey and the parameter estimation. 

1.2 Preliminaries 

Before jumping into the assignments following, you may want to familiarize yourself with the 
template configuration. The shoreside and vehicle configuration you should use as template for the 
frontal estimation problem is available in the class repository: 

moos-ivp-12.2mit/ivp/missions/u6_alpha 

To execute the template survey mission and the shoreside community, use the command: 

>	 ./launch.sh --warp=15 --cool=10 --angle=0 

where the switches represent: 
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warp Time warp factor as usual. You should be able to do at least 10 here.
 

cool The cooling factor k applied to the Boltzman probability in the simulated annealing, exp(−E/kT ).
 

angle The angle of the survey legs. 0 yields vertical survey legs, ±90 horizontal legs.
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2 Mechanics of Writing Behaviors 

Before building a the primary behavior for this lab, we will build to intermediate simple behav­
iors. The first behavior, the “pulse” behavior, simply generates a visual artifact viewable in 
pMarineViewer to confirm the behavior function. The second behavior, the “zigleg” behavior, 
builds on the first behavior to periodically influence the heading of the vehicle in a partial zig-zag 
leg. 

In the end your two behaviors should be runnable with output similar to the two clips below on 
the course wiki page: 

http://oceanai.mit.edu/2.S998/clips/clip_151_bhv_rpulse.mp4
 
http://oceanai.mit.edu/2.S998/clips/clip_152_bhv_zleg.mp4
 

2.1 A First Behavior - the Pulse Behavior 

Although the primary purpose of writing a behavior is to generate output (IvP functions) to 
influence the trajectory of a vehicle, our first behavior will simply post a visual artifact to the 
MOOSDB at certain points in time. The goals of this exercise are to gain familiarity with: 

• Generation of a new behavior class 
• Adding a behavior to the build system 
• Obtaining information from the information buffer into your behavior 
• Overloading general behavior functions to suit your needs 
• Handling the setting of behavior parameters set by the user 

General Description of the Pulse Behavior 

The simple idea behind the Pulse behavior is for the behavior to post a visual artifact to the 
MOOSDB five seconds after the behavior notices that vehicle reaches a waypoint achieved by a 
sister waypoint behavior. The idea is shown in the Figure 2 below. 
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Figure 2: The Pulse Behavior: The behavior simply generates a range pulse after it observes that a waypoint has 
been achieved. The range pulse is a posting to the variable footnotesize RANGE PULSE. 

The Pulse behavior is not configured with waypoints itself, but uses information published by the 
waypoint behavior to detect a change in waypoint status. Each time the “next” waypoint changes, 
the behavior posts a range pulse. Nothing more. 

2.1.1 Step 1: Make a new behavior that does nothing for now 

The first step is to clone the BHV SimpleWaypoint behavior in your moos-ivp-jsmith tree and use 
this as a starting point for the Pulse behavior 

$ cd moos-ivp-jsmith/src/lib_behaviors-test 
$ cp BHV_SimpleWaypoint.h BHV_Pulse.h 
$ cp BHV_SimpleWaypoint.cpp BHV_Pulse.cpp 

Edit these files to change all the class names to BHV Pulse and feel free to remove any of the 
simple-waypoint functionality to start with a bare-bones behavior. 

Make sure you also edit the boiler-plate code at the bottom of the behavior header file with the line 
beginning with IVP EXPORT FUNCTION. 

2.1.2 Step 2: Add the behavior to the build system 

To add the behavior to build system, edit the lib behaviors-test/CMakeLists.txt file. Follow the 
example for BHV SimpleWaypoint. 

Verify that the new behavior is built after re-building the tree. There should be a dynamic/shared 
library file in moos-ivp-jsmith/libs after the build. 

Verify that the new behavior is runnable with the helm. Make a quick copy of your favorite simple 
mission like the alpha mission (ivp/mission/s1 alpha in the in the moos-ivp tree), and add this 
behavior with no configuration parameters. Confirm that the helm launches. The helm will abort 
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if it cannot find this behavior. You can tell the helm about the location of the behavior in one of 
two ways. First you can use a shell environment variable. Set the following in your .cshrc file: 

setenv IVP_BEHAVIOR_DIRS /Users/janesmith/moos-ivp-janesmith/lib’ 

or the equivalent in your .bashrc file for bash users. You can also specifiy the behavior location in 
the pHelmIvP configuration block of your .moos file: 

ProcessConfig = pHelmIvP 
{ 
AppTick = 4 
CommsTick = 4 

Behaviors = alder.bhv
 
Domain = course:0:359:360
 
Domain = speed:0:4:21
 

IVP_BEHAVIOR_DIR = /Users/janesmith/moos-ivp-janesmith/lib 
} 

2.1.3 Step 3: Edit your behavior to get needed info from the InfoBuffer 

There are three key pieces of information your behavior will need to know and update frequently. 
The vehicle’s own x,y position, and the waypoint index to which the waypoint behavior is currently 
transiting toward. The latter information is published by the waypoint behavior in a simple report 
of the form: 

WPT_INDEX = 2 

To ensure the above MOOS variable is subscribed for by the helm and thus in the helm info buffer, 
you will need to explicitly declare that your behavior needs it by using the addInfoVars() function 
in the behavior constructor as described in the Lecture 14 notes. 

You will need also to get the current time from the information buffer. Use the getBufferCurrTime() 
function as described in the Lecture 14 notes. 

You will need the waypoint index to know and note when it has changed. You need the time 
so you can mark the time when it changed and generate the pulse five seconds later. And you will 
need the vehicle x,y position for creating the range pulse when the time comes. You may or may 
not want to store these as member variables of your behavior class. By storing them as member 
variables, you then have the option of having a separate little class function for updating info from 
the info buffer on each behavior iteration. This is just a style suggestion. 

2.1.4 Step 4: Overloading the onRunState() function 

Implement your behavior’s onRunState() function to produce a range pulse each time the behavior 
notes that the waypoint index has increment. Remember, the waypoint index is information posted 
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by a separate behavior, the waypoint behavior, in a posting to the MOOSDB. Have your behavior 
make its posting five seconds after hitting each waypoint. 

The range pulse is a particular message that the pMarineViewer application knows how to parse 
and render. A typical posting looks like: 

VIEW_RANGE_PULSE =	 x=151.11,y=-43.44,radius=20,duration=4,label=pulse,
 
edge_color=yellow,fill_color=yellow,time=16010.31,edge_size=1
 

(Perhaps try poking the above to the MOOSDB with uPokeDB while pMarineViewer is running, to 
get an idea of how it works and what it looks like.) 

The pulse is essentially a ring with expanding radius that expands to a specified value (radius), 
over a specified time (duration). It is centered at a given x,y position and specified edge color, fill 
color, and edge width. In our behavior we want the center to be the vehicle’s current position. 

It is recommended that a VIEW RANGE PULSE message be generated by first creating a XYRangePulse 
instance, setting its parameters, and getting a serialized string version, as below: 

#include "XYRangePulse.h" 

XYRangePulse pulse; 
pulse.set_x(m_osx); 
pulse.set_y(m_osy); 
pulse.set_label("bhv_pulse"); 
pulse.set_rad(m_range); 
pulse.set_duration(m_pulse_duration); 
pulse.set_time(m_curr_time); 
pulse.set_color("edge", "yellow"); 
pulse.set_color("fill", "yellow"); 

string spec = pulse.get_spec(); 
postMessage("VIEW_RANGE_PULSE", spec); 

2.1.5 Step 5: Handle user behavior preferences 

Although not strictly essential in this simple behavior, almost all behaviors need to handle param­
eter preferences specified by the user in the .bhv file. In the Pulse behavior, you should handle 
two particular parameters: the radius of the range pulse and the duration of the range pulse. Your 
behavior should be able to handle the below configuration (namely lines 5 and 6): 

1 Behavior=BHV_Pulse 
2 { 
3 name = pulse 
4 
5 pulse_range = 20 
6 pulse_duration = 4 
7 } 
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To do this, overload the setParam() function in your behavior. You should be able to just follow 
the example of the BHV SimpleWaypoint behavior in your tree. 

2.1.6 Step 6: Demonstrating your behavior 

To demonstrate your behavior, start with a copy of the Alpha mission in the moos-ivp tree (moos­
ivp/ivp/missions/s1 alpha), and just add your behavior to run under the same conditions as the 
main waypoint behavior. Your end result should look something like: 

http://oceanai.mit.edu/2.S998/clips/clip_151_bhv_rpulse.mp4 

2.2 A Second Behavior - the ZigLeg Behavior 

The ZigLeg behavior is an extension of the Pulse behavior. Rather than merely post a range pulse 
after hitting a waypoint, the ZigLeg behavior will briefly produce an objective function to influence 
the vehicle trajectory. Like the Pulse behavior, the ZigLeg behavior looks for the point in time 
where a sister waypoint behavior has reached a waypoint. Five seconds after hitting a waypoint, 
the ZigLeg behavior will produce an objective function with a heading preference some number of 
degrees (by default 45) from the vehicle’s present heading. It will do this only for a brief period of 
time (by default 10 seconds). The idea is shown in the Figure 3 below. 

Figure 3: The ZigLeg Behavior: The behavior generates a brief heading preference (in the form of an IvP objective 
function) shortly after noticing the arrival at a waypoint. 

As with the Pulse behavior, the ZigLeg behavior is not configured with waypoints itself, but uses 
information published by the waypoint behavior to detect a change in waypoint status. Each time 
the “next” waypoint changes, the behavior posts a range pulse and briefly generates an objective 
function. The idea can be seen in the below short video clip: 

http://oceanai.mit.edu/2.S998/clips/clip_151_bhv_rpulse.mp4 

10

http://oceanai.mit.edu/2.S998/clips/clip_151_bhv_rpulse.mp4
http://oceanai.mit.edu/2.S998/clips/clip_151_bhv_rpulse.mp4


2.2.1 Step 1: Make a new behavior that does nothing for now 

Same as with the Pulse behavior, Section 2.1.1. 

2.2.2 Step 2: Add the behavior to the build system 

Same as with the Pulse behavior, Section 2.1.2. 

2.2.3 Step 3: Edit your behavior to get needed info from the InfoBuffer 

Same as with the Pulse behavior, Section 2.1.3, except you will also need the vehicle’s present 
heading. When the behavior does produce an objective function over heading, it will be as an offset 
to the present heading. 

2.2.4 Step 4: Overloading the onRunState() function 

Same as with the Pulse behavior, Section 2.1.4, except in this behavior you will additionally pro­
duce an objective function over vehicle heading, at the very moment the range pulse is generated. 
Although the pulse is generated only once, the IvP function will be generated continuously begin­
ning when the pulse is made, continuing for some number of seconds. The number of seconds and 
the heading offset should by default be 10 seconds and 45 degrees respectively. But these values 
should be configurable in the behavior file and thus handled in your behavior’s setParam() function 
as described below. 

Regarding the syntax needed to create an objective function, most likely you will be using the 
ZAIC PEAK tool to do this. For more information, see the Lecture 14 class notes, and consult the 
BHV SimpleWaypoint behavior for an example. 

Two additional important notes: 

•	 Before returning the objective function in the onRunState() function, you will need to set its 
priority weight. This step is unfortunately missing in the BHV SimpleWaypoint behavior. You 
can do this with the following two lines: 

if(ipf)
 
ipf->setPWT(m_priority_wt);
 

•	 Your ZigLeg behavior will be running alongside the Waypoint behavior. For the ZigLeg be­
havior to exert its influence, you will need to give it a higher priority weight in the .bhv 
configuration file. 

2.2.5 Step 5: Handle user behavior preferences 

In addition to the two parameters handled in the Pulse behavior, your ZigLeg behavior should 
handle two further parameters: the heading offset, and the duration for which the behavior produces 
the objective function on each waypoint arrival event. 

Your behavior should be able to handle the below configuration (namely lines 5-8) 
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1 Behavior=BHV_Pulse 
2 { 
3 name = pulse 
4 
5 pulse_range = 20 
6 pulse_duration = 4 
7 zig_duration = 10 
8 zig_angle = 45 
9 } 

As before, do this by overloading the setParam() function in your behavior. 

2.2.6 Step 6: Demonstrating your behavior 

To demonstrate your behavior, start with a copy of the Alpha mission in the moos-ivp tree (moos­
ivp/ivp/missions/s1 alpha), and just add your behavior to run under the same conditions as the 
main waypoint behavior. Your end result should look something like: 

http://oceanai.mit.edu/2.S998/clips/clip_152_bhv_zleg.mp4 

2.3 Assignment 

The assignment for this section is to (a) demonstrate your two working behaviors to a TA or in­
structor, and (b) demonstrate that your two behaviors accept parameter modifications as described 
in Sections 2.1.5 and 2.2.5. The due date for this is by the end of lab on the 24th (next Tuesday). 
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3 Front Estimation 

3.1 Front Model 

Figure 4: Ocean Front Estimation: The temperature field is parameterized by an analytical model with 9 pa­
rameters. In addition to the geometrical parameters shown here, the parameters include the temporal period T , the 
length scale of the frontal gradient, β, and the propagation decay α 

The temperature field is modeled by an analytical function, defined as follows. 
The coordinate system aligned with the front, shown in Fig. 4 is defines as 

x � = x cos θ + (y − y0) sin θ (1) 

y � = (y − y0) cos θ − x sin θ. (2) 

The position of the center of the front in the front coordinate system is 

yf = a exp(−x �/α) sin(kx� − ωt), (3) 

where k = 2π/λ is the wavenumber and ω = 2π/T is the radial frequency. The temperature field 
is then given by 

τ = τ0 + dτ tan−1(y � − yf )/β, (4) 

where 

τ0 = (τN + τS)/2 (5) 

dτ = (τN − τS)/π. (6) 
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The sensor model used by the vehicles is uFldCTDSensor which simulates the front and takes 
virtual measurements of the associated temperature field using the class CFrontSim. The sensor 
simulator is operated in the shoreside community. A vehicle requests the measurement by pub­
lishing the variable UCTD SENSOR REQUEST to the MOOSDB with the value vname=my auv. In the 
template configuration the measurement request are scheduled by the process uTimerScript, with 
the sampling period set iin the plug plug uTimerScript.moos. When you develop your behavior 
you may use the scheduler or directly issue the requests from your behavior. The measurement is 
returned in the MOOS variable UCTD SENSOR REPORT with the content 

vname=my_auv,utc=123456789.0,x=123.45,y=345.67,temp=22.34 

You control the dynamics of the frontal simulator by setting the ground truth parameters in 
the plug plug uFLDCTDSensor.moos: 

//-------------------------------------------------­

// uFldCTDSensor configuration block from plugin 

ProcessConfig = uFldCTDSensor 
{ 
AppTick = 3 
CommsTick = 3 

// Configuring Model of Dynamic Front
 
xmin = 0;
 
xmax = 500;
 
ymin = -400;
 
ymax = 0;
 

offset = -90; // y_0
 
angle = 5; // front angle theta
 
amplitude = 20; // spatial amplitude a
 
period = 200; // temporal period T
 
wavelength = 200; // spatial wavelength lambda
 
alpha = 400; // spatial 1/e length scale alpha
 
beta = 20; // length scale of frontal gradient beta
 
temperature_north = 20; // temperature North of front
 
temperature_south = 25; // temperature South of front
 
sigma = 0.01; // standard deviation of gaussian sensor noise
 

} 

3.2 Parameter Estimation 

On your vehicle you will run the parameter estimation process pFrontEstimate which subscribes to 
the sensor report. It must be configured with the minimum and maximum of all the frontal model 
parameters in the plug plug pFrontEstimate.moos: 

ProcessConfig = pFrontEstimate 
{ 
AppTick = 4 
CommsTick = 4 

vname = $(VNAME) 
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temperature_factor = $(COOL_FAC) 
cooling_steps = $(COOL_STEPS) 
min_offset = -120; 
max_offset = -60; 
min_angle = -5; 
max_angle = 10; 
min_amplitude = 0; 
max_amplitude = 50; 
min_period = 150; 
max_period = 250; 
min_wavelength = 100; 
max_wavelength = 300; 
min_alpha = 399; 
max_alpha = 401; 
min_beta = 10; 
max_beta = 30; 
min_T_N = 15; 
max_T_N = 25; 
min_T_S = 20; 
max_T_S = 30; 
concurrent = true // Flag controlling whether the 

// annealing is performed concurrently 
// with survey. 

} 

The cooling parameters are set in the launch script or on the command line. Note the parameter 
concurrent which is used to control whether the annealing is performed concurrently with the survey. 
This feature can be used to save time, but it has to be used with care, in particular if combined with 
fast cooling (cooling steps small), because the parameters may ’freeze’ before the survey reaches 
the areas which provide the most information. 

Note also that you may ’fix’ one or more variables by simply setting the min and max values 
equal to the true value. This is useful for determining the utility of a survey strategy for determining 
a specific parameter or the coupling between a couple of parameters, as you will be ask do do in 
the assignments. 

The measurement collection and the parameter estimation is initiated when the survey flag is 
set in the MOOSDB: 

SURVEY_UNDERWAY = true 

which must be set by the survey behavior. You can see how this is done with the active flag in 
the meta file for the vehicle helm, meta vehicle.bhv: 

//--------------------------------------------------­

// Helm Behavior file 

initialize DEPLOY = true 
initialize RETURN = false 
initialize STATION_KEEP = false 
initialize SURVEY = true 
initialize AVOID = true 
initialize SURVEY_UNDERWAY = false 
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set MODE = ACTIVE { 
DEPLOY = true 

} INACTIVE 

set MODE = RETURNING { 
MODE = ACTIVE 
RETURN = true 

} 

set MODE = SURVEYING { 
MODE = ACTIVE 
SURVEY = true 
RETURN = false 

} 
//---------------------------------------------­

Behavior = BHV_Waypoint 
{ 
name = waypt_survey
 
pwt = 100
 
condition = MODE==SURVEYING
 
perpetual = true
 
updates = SURVEY_UPDATES
 
activeflag = SURVEY_UNDERWAY = true
 
inactiveflag = SURVEY_UNDERWAY = false
 
endflag = RETURN = true
 

// cycleflag = SURVEY = false 
// repeat = 1 

lead = 8 
lead_damper = 1 

speed = 2.0 // meters per second 
radius = 8.0 
points = format=lawnmower, label=dudley_survey, x=$(SURVEY_X), y=$(SURVEY_Y), \ 

width=$(WIDTH), height=$(HEIGHT), lane_width=$(LANE_WIDTH), \ 
rows=north-south, degs=$(DEGREES)
 

visual_hints = nextpt_color=red, nextpt_lcolor=khaki
 
visual_hints = vertex_color=yellow, line_color=white
 
visual_hints = vertex_size=2, edge_size=1
 

} 

When you write your own behavior in the second part of the assignment you will have to 
configure it in a similar way. 

3.3 Assignment Section A 

In the first part of the assignment, we will focus on developing a fundamental understanding 
of the front model parameterization and the role of the survey pattern in isolating or coupling 
the various parameters. Also, we are using a simulated annealing algorithm for the parameter 
estimation, and we have to make sure we choose the cooling schedule properly to arrive at a good 
parameter estimate. We will try to achieve that throgh a sequence of excersises using the template 
configuration in missions/u6 alpha. Your lab report should include a description of what you are 
doing in each component, and what you are learning. 

The lab is open-ended and unstructured, and you should use your own intuition for this ’learning 
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phase’:
 

•	 Note that there is no unique solution, so use your common sense in your analysis. 

•	 The parameter settings in the following execises are only suggestions. If you see something 
interesting, choose your own settings. 

•	 Also, do not base your discussion on a single survey run, the score may vary significantly due 
to the stochastic nature of the estimator.. You can do this by simply re-deploying the vehicle. 

3.3.1 Annealing Schedule 

For this exercise we will initially fix some of the parameters, and make the front quasi-stationary: 

alpha = 500 
beta = 20 
angle = 5 
period = 1e6 

Run the default survey with survey with –angle=0, changing the cooling factor. 
Next, open up the search interval for the parameter alpha to the interval [300, 800]. Do you 

observe a difference in performance? Explain. 
Also, try to run the annealer after all measurements are collected, by stting concurrent = false. 

3.3.2 Parameter Sensitivity 

Fix all parameters except one, the wavelength, run several surveys andd make a plot of the score 
versus estimated value. 

Repeat the excersise with two parameters unknown, the wavelength and the period. 

3.3.3 Dynamic Front 

Now add dynamics by setting period=200 with search interval [100, 300]. Discuss the results. 

3.3.4 Survey Pattern 

Repeat the survey with fixed with –angle=270 and angle=225. Also, try changing the survey 
lane width. Discuss your findings. You may want to focus on wavelength and period, fixing all 
other parameters. Which survey angle do you think best separates the two parameters? Is your 
expectation confirmed by the survey? 

3.3.5 Multiparameter Estimation 

Open up the search interval for all parameters. 
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3.4 Assignment Section B 

3.4.1 Adaptive Sampling Behavior 

In the second part of the assignment you should use your experience from the survey exercises 
to develop your own strategy for sampling the field and estimate the parameters as accurately as 
possible in the shortest amount of time, and build it into a new IvPHelm behavior, adapting to the 
measured temperature field. 

Your behavior must perform both the search for the front and then survey it in an optimal 
manner. You may either write a single behavior doing both phases or you may set up the search 
and the mapping phases as separate modes. The objective is to get the smallest parameter error 
in the shortest amount of time. 

3.4.2 Collaborative Sampling 

We are not asking you to perform the survey with two collaborating vehicles, but we may do that 
on the river. As the last part of the assignment, we ask you to speculate on how you would design 
a collaborative behavior strategy for reaching the objective. 
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