
21M.380 Sonic System Project Report:
Generative Context-free Grammars

Introduction

For my final project, I made a system for defining context-free grammars (CFGs) and expanding
a sequence of terminals into non-terminals using randomized productions. This contrasts with the
more common activity of parsing a string of already-generated terminals into higher-level non-
terminals, which is essentially the reverse process. A sequence of terminals can then be processed
to produce some sort of output, such as a sound or a song. Using this system, complex defi­
nitions can be easily created as a series of productions, each of which maps a symbol to one or
more probabilistically-weighted expansions, in order to create complex randomized, but structured,
behavior.

Motivation

As a computer science student and programmer, I am interested in the languages used to represent
digital information. This includes general-purpose programming languages such as Python or Java,
but also domain-specific languages (DSLs) created for a particular use, such as AthenaCL. These
examples are all at least somewhat imperative in nature; that is, they take the form of a sequence
of commands or instructions to execute. For example, in AthenaCL, one can sequentially specify
various parameters of a musical piece, issue a command to render the piece, then continue to
apply further modifications. The opposite of imperative programming is declarative programming:
instead of expressing what to do step-by-step, the programmer specifies what the finished product
should be, and whatever is interpreting or compiling the program must figure out how to accomplish
that. AthenaCL can be considered declarative as well, as one defines various types of parameterized
musical objects, and then the interpreter automatically generates a sound represented by these
objects; the user doesn’t need to know how to actually implement a random walk or how to create
midi events, for example.

Many prefer programming in a declarative style, myself included, because it’s usually easier to
symbolically define what you want than to create the specific commands to generate that definition.
Unfortunately it’s usually easier to create imperative languages, since the information is represented
in less-complex components and is thus easier to render (basically, someone has to do the hard

1

part: either the programmer or the interpreter/compiler converting the program into something
a computer can execute). DSLs, however, often lend themselves to a more declarative style than
broader programming languages, as the information that can be represented is constrained and
thus it is simpler to automatically render what the user models using the language, since there are
fewer possibilities.

The generative CFG engine I created is essentially a tool for creating simple DSLs, with the
added twist of randomized definitions. The random aspect makes the system suited for creative
pursuits, such as music generation, that don’t require that a program always produce the same
“correct” output (in fact, the opposite is often preferable when creating computer music), although
a more conventional DSL can be specified by only specifying one expansion for each symbol. I hope
the system can simplify the creation of complex musical generation by allowing users to create a
generative CFG (or several) and then use it to quickly define and generate different types of music.

Implementation

At the core of this system is the file gen.py. This script takes a string of space-delimited symbols
and a grammar file, recursively expands each symbol according to the provided grammar until
no more expansions are possible (i.e., none of the symbols have expansions in the grammar), and
outputs the resulting sequence of terminals.

In general terms, a grammar in my system is a collection of productions, which map a symbol
to one or more expansions. An expansion is a sequence of one or more symbols. Each expansion
is annotated with a weight, reflecting how likely it is be chosen among the possible expansions.
Grammars in my system are represented as YAML files (YAML is a data serialization format known
for its readability, see www.yaml.com). The grammar is represented as a hash, with symbols as
keys and a hash of expansions as values. Each expansion hash is keyed by single space-delimited
string of symbols (the expansion itself) with an integer weight as a value. As an example, here is a
grammar I made to represent a waveform, where the waveform is modeled as successive additions
and multiplications of basic waveforms:

sound:
init any+ : 1

init:
’+sin([220-880])’ : 2
’+saw([220-880])’ : 1
’+square([220-880])’ : 5

any:
’+sin([220-880])’ : 2
’+saw([220-880])’ : 1
’+square([220-880])’ : 1

2

’*sin([220-880])’ : 5
’*saw([220-880])’ : 3
’*square([220-880])’ : 3

If a symbols is followed by a *, it means it can be expanded into zero or more instances of that
symbol. Using a + instead signifies that the symbol can be expanded into one or more instances.
A range in brackets (like [220-880] above) is expanded into an integer randomly chosen from within
that range (inclusive).

Grammars can contain recursive productions, but each production must contain at least non-
recursive expansion since the script expands the sequence until it contains only terminals (symbols
without expansions).

Here is an example of gen.py using this grammar, which is saved in sound.yaml:

$ python gen.py "sound" sound.yaml

[’sound’]

[’init’, ’any+’]

[’+square([220-880])’, ’any’, ’any*’]

[’+square(349)’, ’*sin([220-880])’, ’any’, ’any*’]

[’+square(349)’, ’*sin(426)’, ’+sin([220-880])’]

[’+square(349)’, ’*sin(426)’, ’+sin(645)’]

As seen above, gen.py prints the sequence produced with successive expansions. The first line
is the initial sequence given, and the last line is the final sequence of non-terminals produced.

Of course, this sequence alone is basically useless unless we have a way of converting it to the
waveform it represents, in this case a square wave convolved with a sinewave and then added to
another sinewave (the numbers are the frequencies). I wrote another script, wavgen.py, that takes
sequences of this form and creates a wav file.

Grammars can also be composed, meaning that the output produced by applying one grammar
to an initial sequence is used as input to another. When multiple grammar files are supplied as
arguments to gen.py, it composes the grammar, calling the first one listed first with the initial
sequence, passing its output to the second, etc.

For example, song.yaml defines a simple definition of a song:

song:

- note note note note+ : 1

note:

- C : 1

- D : 1

3

http:wavgen.py

- E : 1
- F : 1
- G : 1
- A : 1
- B : 1

notes.yaml provides productions for converting the notes to waveforms:

frequencies from http://ptolemy.eecs.berkeley.edu/eecs20/week8/scale.html
A: {sin(440) : 1}
Bb: {sin(466) : 1}
B: {sin(494) : 1}
C: {sin(523) : 1}
Db: {sin(554) : 1}
D: {sin(587) : 1}
Eb: {sin(622) : 1}
E: {sin(659) : 1}
F: {sin(698) : 1}
Gb: {sin(740) : 1}
G: {sin(784) : 1}
Ab: {sin(831) : 1}
A2: {sin(880) : 1}

Composing these two grammars gives us the following:

$ python gen.py "song" song.yaml notes.yaml

[’song’]

[’note’, ’note’, ’note’, ’note+’]

[’F’, ’D’, ’D’, ’note’, ’note*’]

[’F’, ’D’, ’D’, ’C’, ’note’, ’note*’]

[’F’, ’D’, ’D’, ’C’, ’D’]

[’F’, ’D’, ’D’, ’C’, ’D’]

[’sin(698)’, ’sin(587)’, ’sin(587)’, ’sin(523)’, ’sin(587)’]

gen.py first expanded song using the productions in song.yaml, giving us a sequence of notes in
the C major scale. This sequence was in turn expanded using notes.yaml, giving us the waveforms
of the notes.

If we want to hear this song, we cannot use wavgen.py, as it combines waveforms into a
single waveform through addition or multiplication instead of sequencing (we could play all the
notes at the same time with wavgen.py though, as it automatically converts symbols of the form
“wav(freq)” to “+wav(freq)”). Instead we would like to sequence the notes. I wrote yet another

4

http://ptolemy.eecs.berkeley.edu/eecs20/week8/scale.html
http:wavgen.py

script, wavsequencer.py, to perform this task. wavsequencer.py takes an initial sequence and an
arbitrary number of grammar files, like gen.py and wavgen.py, expands the initial sequence by
composing the grammars, and then uses wavgen.py to render each symbol in the new sequence.

Of course, these are just examples of what can be produced. New grammars can be written
to produce more complex songs and sounds by using the productions defined in sounds.yaml and
notes.yaml, and new scripts can be written to interpret new types of symbols (or reinterpret existing
symbols, as in the case of wavsequencer.py).

Reflections

I really like the idea of using generative CFGs to produce music. Just playing with the few simple
scripts and grammars I’ve produced, I’ve been able to create some interesting (if insubstantial)
sequences, and it’s fun to just run the same command over and over again and listen to the
differing results. Using this system, it’s very easy to build upon existing tools I’ve created, which
I value in any kind of production framework (music, code, or otherwise).

I think I could have explored the system much more in depth though. I was extremely crunched
for time this semester, so what I have so far is really more of a proof-of-concept than a tool that
could actually be used. I would like to expand the CFG format, allowing for more expressive
productions (for example, adding parameters to symbols that can be symbolically referenced in
other symbols, adding more regular-expression constructions, and maybe allowing multiple symbols
on the left-hand-side of an expression, which would make the grammars more contextual). I also
could have done a lot more with the mini-DSL I designed for use with wavgen.py; the script has
the ability to produce waveforms of varying duration and amplitude in addition to frequency, but
there is currently no way to express that in a symbol. I may continue to expand the system over
the summer to see if I can get more out of it, because I think this concept could lead to some
interesting and useful composition techniques.

5

http:wavsequencer.py
http:wavgen.py

MIT OpenCourseWare
http://ocw.mit.edu

21M.380 Music and Technology: Algorithmic and Generative Music
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

