
Chapter 2. Meeting 2, Foundations: Sounds, Signals, Samples, 
and Encodings 

2.1. Announcements 

•	 Reading and Listening Discussion Leader assignments will be posted today 

•	 Note that I will not comment directly on posted notes (but do check that they are there) 

2.2. Reading: Wang, A History of Programming and Music 

•	 Wang, G. 2007. “A History of Programming and Music.” In N. Collins and J. d'Escriván, eds. The 
Cambridge Companion to Electronic Music. Cambridge: Cambridge University Press, pp. 55-71. 

•	 What non-software programming interfaces for music does Wang describe? 

•	 What are some of the fundmental concepts shared by many music programming languages? 

•	 What is the trajectory of programming languages proposed? 

2.3. Reading: Puckette, Max at 17 

•	 Puckette, M. 2002. “Max at 17.” Computer Music Journal 26(4): pp. 31-43. 

•	 Is there one Max? 

•	 What was the background developement of Max? 

•	 What is max good at? What is it not good at? 

•	 What roles do style and aesthetic play in computer music software design? 

2.4. Starting Pd, The Pd Window 

•	 The Pd Window is the destination of all error messages and message sent with [print] 

•	 The “compute audio” toggle 

•	 Controls all signal processing generation 

•	 Can also be toggled in Media menu, with key strokes, and also with text commands (to be

shown later)


31 



2.5. Basic Components 

•	 Patches: windows or collections of windows 

•	 Object boxes: process or create data or signals 

•	 Message boxes: store data 

•	 Data 

•	 Can be “event” data or “signal” data 

•	 Passed via “patch cables” between boxes 

•	 Comments: notes to yourself 

•	 Interface objects: number boxes, slides, signal boxes, etc. 

2.6. The Patcher Window 

•	 A window represents a patch 

•	 Windows can communicate between each other 

•	 A patch can be embedded in another patch using [pd name] 

•	 A patch can be stored as a file and loaded into another patch, called an abstraction 

2.7. The Patcher Window: Edit and Run Modes 

•	 Patch windows have two modes: edit and run 

•	 Changing modes: Menu: Edit > Edit mode (command E) 

•	 Edit mode: configure objects, create patches, move things around, selected objects are blue 

•	 Run mode: objects do not move, user interface components (knobs, sliders) function 

•	 Example: Put a Vslider; when blue, in edit mode, cannot use slider; in run mode, black, can use 
slider 

2.8. Object Boxes 

•	 An object is generally a computational subroutine 

•	 An object has a class: a paradigm, an archetype 

32 



•	 We can make many instances of the same object, each with its own behaviour and settings 

•	 Example: [random 20], [random 4] 

2.9. Object Boxes: Creation 

•	 Use the Put menu: Menu: Put > Object (command 1) 

•	 An empty dotted-line box emerges: this is not an object 

•	 An object has to have at least one creation argument to specify its type 

•	 Additional arguments can be used to configure the object 

•	 Example: [+], [random], [line], [select], [print], [osc~] 

2.10. Objects: Types 

•	 There are event (control rate) objects and signal objects 

•	 Event objects process data: [line], [select] 

•	 Signal (tilde) objects process signals: [line~], [osc~] 

•	 There may be two versions of a type of object, one for events, one for signals: [+], [+~] 

2.11. Object Inlets 

•	 Inlets provide data or signals into objects (not both) 

•	 White (hollow) inlets are for data, dark (filled) inlets are for signals 

•	 Example: [+], [+~] 

•	 For many event objets, leftmost inlet is hot: output is provided only when values are provided in 
this inlet 

•	 Example: [+], [pack] 

2.12. Object Outlets 

•	 White (hollow) outlets are for data, dark (filled) inlets are for signals 

•	 Example: [+], [+~] 

33 



•	 Outlets almost always provide output from right to left 

•	 Example: [unpack f f f] 

2.13. Object Interconnections 

•	 Connections between objects can transmit either signals or event data 

•	 Signal and event data connections are different, and cannot be interconected 

•	 To create a connection: in Edit mode, mouse over outlet until cursor is a circle; click and hold; 
mouse over desired inlet until cursor is a circle; release click. 

•	 Example: [* 4] to [+ 3], [*~ 4] to [+~ 3] 

2.14. Data 

•	 Data can be bangs, numbers, symbols, lists, or signals 

•	 Bangs (b): a trigger, an event, a “do something now” 

•	 Numbers (f): all numbers are floating point values 

•	 Symbols (s): character strings (not in quotes) 

•	 Lists (l): a space separated collection of numbers or symbols 

•	 Signals (v): floating-point number stream at the sampling rate (when “compute audio” is on) 

2.15. Data Storage 

•	 Data can be seen (in objects, interfaces, etc) and unseen (in objects, through patch connections) 

•	 Only data that is “seen” is saved with patch 

2.16. Data Storage: Object Boxes 

•	 Objects can have additional construction arguments 

•	 These arguments configure how the object performs on initialization 

•	 These arguments can sometimes be overridden by inlet values 

•	 Example: [* 2] 

34 



2.17. Data Storage: Message Boxes 

• Use the Put menu: Menu: Put > Message (command 2) 

• One inlet, one outlet; note curved left side distinguishes message boxes from object boxes 

• Store bangs, numbers, symbols, or lists 

• Saved with patches 

• Provide a user interface: can be clicked in Run mode to provide output 

• Example: (bang) to [random 10] to [print] 

• Example: (3) and (10) to [+] to [print] 

2.18. Interface Objects: Number Boxes 

• Can be used to provide numerical inputs to other objects 

• Can be used to receive the numbers outputted from objects 

• Can be varried as a GUI only in Run mode 

• Important: holding down shift permits enter flaoting point values 

• Min and max values can be set with object properties 

2.19. Interface Objects: Bang 

• Can click to send a bang 

• When receiving a bang, darkens 

• Sending a bang can be replaced by a message box with “bang” specified 

2.20. Selecting, Moving, and Copying Objects 

• Objects can only be moved in edit mode 

• Can click and drag to create a selection area 

• Objects (and interconections) can be duplicated and copied 

• Copying and pasting overlays existing objects: always duplicate 

35 



2.21. Object Help, Documentation, and Tutorials 

•	 Control click on an object and select “help” to view a help patch 

•	 Demo patches (when available) provide examples and explanation 

•	 The PD Glossary http://www.flexatone.net/docs/pdg 

•	 Kreidler, J. 2009. “Programming Electronic Music in Pd.” Wolke Publishing House. Available 
online at http://www.pd-tutorial.com. 

2.22. Object Properties 

•	 Control click on a bang interface object and select “properties” to specify visual appearance 

•	 Colors and other attributes can be configured 

2.23. Comments 

•	 Comments are notes left to readers of the program 

•	 Comments cannot be used as data in a patch 

•	 Comments are critical and are essential in good code 

•	 Use the Put menu: Menu: Put > Comment (command 5) 

2.24. Saving Patches and PD files 

•	 Always save files with a .pd extension at the end 

•	 PD files are text files that specify the interconnections between objects 

2.25. Abstractions and Martingale 

•	 Abstractions are PD patches that can be used in other PD patches 

•	 Abstractions may have any number of inlets or outlets 

•	 To load an abstraction, it must be placed in a directory that PD knows about 

•	 Download Martingale manually: http://code.google.com/p/martingale/ 

•	 Add the “martingale/pd/lib” directory to Preferences > Path; this permits loading abstractions 
from the martingale library 

36 

http://www.flexatone.net/docs/pdg
http://www.pd-tutorial.com
http://code.google.com/p/martingale/


2.26. Noise 

•	 Noise at the audio rate is random amplitudes, scaled between -1 and 1 

•	 White noise produces equal energy across entire spectrum 

•	 Source of rich signals and randomness 

•	 [noise~] object provides random audio rate values between -1 and 1 

•	 Example: martingale/demo/signalWaveforms.pd 

2.27. Mouse State Noise 

•	 1. Connecting Noise to output; scaling amplitude with [*~], turning DSP on and off with message 
boxes 

• 2. Smoothly controlling amplitude with [mgUiMouseState], [sig~], and [lop~ 20]; conversion of 
event data to audio rate data 

37 



• 3. Performing subsonic amplitude modulation (tremolo) with [cycle~] and [mgRectify~] 

38




• 4. Scaling unit interval values with [mgScaleMinMax~] 

39




2.28. Sines 

•	 Sine waves provide a perfect circular motion over time 

•	 Produces single, perfect frequency with no overtones 

•	 Example: martingale/demo/signalWaveforms.pd 

•	 Audible range from 20 to 20,000 Hertz 

•	 Example: martingale/demo/earLimits.pd 

•	 Frequency is logarithmically related to pitch; equal pitch values are octaves, or a 2:1 frequency 
ratio 

•	 Example: martingale/demo/earLogFrequency.pd 

•	 MIDI pitch values are an integer to half-step mapping; can convert from MIDI to frequency with 
[mtof] and [ftom] 

40 



2.29. Mouse State Sines 

•	 A mouse theremin: y axis controls amplitude, x axis control pitch (scaled between MIDI values 40 
and 64 and converted with [mtof~]) 

2.30. Harmonic Waveforms and Wavetables 

•	 Anything other than a sine tone has a rich (or richer) spectrum 

•	 Many naturally resonating bodies produce secondary vibrations at whole-number multiples of the 
base frequency 

•	 Common waveforms represent common arrangements of overtones produced by summing 
harmonic overtones: triangle, square, and sawtooth 

•	 Example: martingale/demo/sumOfSines.pd 

Example: martingale/demo/signalWaveforms.pd 

•	 A wavetable is an array that stores wave patterns (or other data) and reads them back at variable 
rates 

41 



• Arrays store (generally large) lists of values indexed from zero 

• Each array in Pd must have a unique name; names can be provided as arguments 

2.31. Mouse State Harmonic Drones 

• Mixture of detuned saw and square waves; y axis controls amplitude, x axis controls tremolo 

2.32. Listening: Schaeffer 

• Listening: Pierre Schaeffer, Cinq Etudes De Bruits: Etude Violette, 1948 

• Pierre Schaeffer, Etude aux objets, 2. Objets étendus , 1959 

42 



2.33. Listening: Cage and Oswald 

•	 Listening: John Cage, Williams Mix, 1952


-

•	 John Oswald, “Dab,” Plunderphonics 69/96, 1989


2.34. Stored Digital Audio 

•	 Audio file data can be loaded into arrays and treated as a wavetable 

•	 Audio files may have different bit depths and sampling rates; when loaded in Pd amplitudes range

from -1 to 1


2.35. Mouse State Audio File Looper 

•	 Variable rate audio file looper: y axis controls amplitude, x axis control rate of playback from -2 to 

10


43 



2.36. Pd Tutorial 1 

1. The following examples demonstrate operations with Pd. Recreate the following patch 
components in a Pd file and and answer the provided questions as comments in the Pd file. 

44 



2. In a Pd file, re-create one of the demonstrated Mouse State instruments shown above. Extend 
the instrument in some way: alter fixed parameters, apply alternate mappings of mouse values, 
combine different sound sources. 

45 



MIT OpenCourseWare
http://ocw.mit.edu 

21M.380 Music and Technology: Live Electronics Performance Practices 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

