
	

	

	 	

Assignment	 1:	Sine 	Synthesis

Overview
In lecture, we learned about creating a tone with a basic sine wave. We created a
SineGenerator class as concrete example of a generator, and connected this generator to
the Audio class in order to hear the generated sound.

In this assignment, you will expand the functionality to:
• Specify pitches (A, B-flat, C, etc...) instead of frequencies
• Allow multiple simultaneous tones
• Specify a duration for each note as well as an amplitude shape (ie, an envelope)
• Allow for notes of differing timbres

You will be creating a very simple synthesizer, which you can then play by mapping keys on
your laptop keyboard to “play note” commands.

Once you get the whole thing working, create something fun. For example, you don't have to
just have the chromatic scale mapped to your keyboard. What other mappings can you
create that are more interesting?

Part 1a
In class, we learned that a generator's job is to create audio data. The Audio class repeatedly
asks its generator for a small bit of audio data and plays it out the speaker. SineGenerator is
a simple example of a generator. The generator’s interface is:

class Generator: 0
def generate(self, num_frames, num_channels): 0

return (array, continue_flag) 0

A generator must return a floating-point numpy array of length (num_frames *
num_channels) and a flag (True or False) indicating whether the generator is done (False),
or has more audio to generate next time around (True). Note that for this assignment, we
will only generate mono signals, so you can assume num_channels == 1. In subsequent
assignments, we will switch to stereo.

Create a NoteGenerator class (very similar to SineGenerator) that is instantiated with a
frequency (Hertz), duration (seconds), and gain (ranging from 0.0 to 1.0). When Audio is
assigned the generator, it will play the said frequency for the given duration at the given
loudness (gain). When the note duration is done, the NoteGenerator should return False
for the continue_flag.

In MainWidget, have a few key-down messages play notes with specific pitches, durations,
and gains of your choice. Each time a key is pressed, create a new NoteGenerator instance
and tell Audio about it.

	 	

	 	

	 	

Part 1b
Make your note generator take a pitch value instead of a frequency. The pitch value is an
integer, and a continuous set of integers defines the chromatic scale. We will learn about
MIDI soon, so we'll stick with the MIDI convention that frequency A440 = pitch value 69.
That also means that middle C is 60 (9 semitones lower than the A).

As discussed in class, we will use equal-tempered tuning. To find the frequency one octave
higher than a note with frequency F, we multiply by 2. To find the frequency one semitone
higher than a note with frequency F, we multiply by the 12th root of 2. See:
http://en.wikipedia.org/wiki/Pitch_%28music%29 for more details.

Write your Pitch to Frequency conversion in separate function:
def pitch_to_frequency(pitch): 0

... 0
return freq

Change your key-down test functions to test the pitch (rather than frequency) interface.

Part 2
Create a new generator called Mixer. Mixer is an object that combines many separate audio
sources (ie, other generators) into a single audio stream, which is then fed into the main
Audio class for playback. Create methods for Mixer: add(), remove(), set_gain(),
get_gain(). Note that Mixer’s interface allows you to add or remove generators at any time.

Mixer’s generate() function should iterate through its array of generators, mixing (ie,
adding) their results into a master buffer, then applying the gain, and finally returning the
calculated audio buffer. If any generator returns False, it should be removed from Mixer’s
array. Note that Mixer itself should always return True in the continue_flag.

Important note: Careful when you implement generate(). It is a bad idea to remove an item
from a list while iterating through that list.

Now hook it up. Mixer should feed into Audio and NoteGenerators should be added to
Mixer. With this architecture, you should have polyphony working. You should be able to
play and hear multiple notes at the same time.

Part 3
Right now, your note generator plays a single volume pitch for N seconds and abruptly
turns off (most likely causing a slight pop/click). Let's make that nicer by creating an
amplitude envelope. This envelope lasts the full duration of the note. Look at Section 9.2.1
In Musimathics, Volume 2. You will see how to generate an envelope with a specific attack
time and decay time. For simplicity, ignore the attack time (so set a=0). This makes the
curve simpler to compute because it is single continuous function. Create the decay
envelope as described in Section 9.2.1. You can play around with the parameter n2 to get
different types of decay curves.

http://en.wikipedia.org/wiki/Pitch_%28music%29
http://en.wikipedia.org/wiki/Pitch_%28music%29

	 	

	 		

	

	

	
	

	

As an optional part of this assignment, implement both the attack and decay portion of the
envelope curve. Hint, the numpy function where() might be useful.

Part 4
A sine wave is boring. Let's make other kinds of sounds. Expand the capabilities of your note
generator to add a series of harmonic frequencies (overtones) to the fundamental
frequency. You can compactly represent the harmonic series as an array of amplitudes [a0,
a1, a2, a3…], where aN is the amplitude of the N'th overtone. In Musicmathics, Volume 2
Section 9.25 - 9.2.7, you can see how to construct the "Geometric Waveforms": Square
Wave, Triangle Wave, and Sawtooth Wave.

Give your note generator an additional argument - a list of harmonic amplitudes. Since these
amplitude values drop off fairly quickly, you only need to provide the first 10 or so values.
Beyond that, the effect becomes less audible. Create a few different note timbres (Square
Wave, Sawtooth). You can also try other values to see how a note's timbre changes with
different strengths of the overtone series.

Part 5
Come up with a creative way to use this system that lets you “perform” something. Create
mappings between your keyboard and your synthesizer.
Some ideas:

• Define a sequence of notes (like you saw in the first day of class) so you can trigger a
melody.

• Hitting a single key can play more than one note – it can play an entire chord!
• You can trigger staccato (short) notes and legato (long) notes to create different

melodic effects, or have different timbres for different parts of your piece.
• You can have a set of “meta keys” that have larger effects and can affect other

mappings. For example, if you have 1-9 mapped to a C-major scale, hitting a single
other key can change that mapping to a different scale.

Write up a short description of the how to control your system in a README file.

Create a quick / rough / unedited video of your performance. It doesn’t need to be long: 30-
60 seconds is fine. You can either submit the video file or (better) upload it to
YouTube/Vimeo and provide a link in the README.

Finally...
Please have good comments in your code. When submitting your solution, submit a zip file
that has all the necessary files. For example, if you used other files that I provided (like
core.py), re-provide those files back to me in your submission.

MIT OpenCourseWare
https://ocw.mit.edu

21M.385 Interactive Music Systems
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu
https://ocw.mit.edu/terms
http:https://ocw.mit.edu

