22.01 Fall 2016, Problem Set 8

December 5, 2016

Complete all the assigned problems, and do make sure to show your intermediate work.

Part I

Skill-Building Questions (50 points)

1 Conceptual Questions (3 points each)

- 1. Define the major short-term biological effects due to intense gamma radiation exposure, and explain their origins.
- 2. Starting from the entry of a quantum of ionizing radiation into the body, explain, step by step, the most likely mechanism to induce mutations in a cell.
- 3. List some of the other, non-radioactive sources of the free radicals responsible for DNA damage and eventual cell mutations. Where do they come from?
- 4. You are given four cookies containing dangerous levels of a high-activity isotope. Each has the same half life, the same concentration, and therefore the same activity. One emits alpha particles, one emits betas, one emits gammas, and one emits neutrons, all at the same energies. You must put one in your pocket, hold one in your hand, eat one, and give one to a "friend." What do you do, and why? Use your knowledge of stopping power, range, and relative biological effectiveness to explain.
- 5. Explain why cancerous tumors are relatively resistant to radiation compared to normal cells, making radiation therapy more difficult.

2 Analytical Questions (25 points)

For these questions, read the following article on The Demon Core accident, and this article detailing the resulting radiation effects suffered by the two workers exposed.

- 1. (5 points) Explain, step by step, what caused the high exposure to radiation.
- 2. (15 points) Calculate or find the total energy, dose, and equivalent dose absorbed by both Daghlian and Hemmerly in (a) Roentgen, (b) Rad, (c) Gray, (d) Rem, (e) Sieverts.
- 3. (5 points) If the men's equivalent doses had been due to fast neutrons instead of gamma and x-rays, what would the dose absorbed in Gray been for each person?

3 Radiation in the Environment (5 points each)

- 1. List the five largest *natural* sources of background radiation from living in Cambridge, MA, and what percent of your yearly background dose they comprise. Give citations where appropriate.
- 2. Estimate and explain the increase in background dose per hour from flying from Boston to Japan, over the North Pole. Use the BOS-NRT flight as your reference case, taking into account any increase in radiation from (1) altitude and (2) flying close to the north pole.

Part II

Noodle Scratchers (50 points)

4 Radiation Resistance and Fevers (20 points, open-ended)

For these questions, you will calculate a few parameters related to radiation resistance and sensitivity by changing someone's body temperature. We will focus on two free radicals produced by radiation: hydrogen peroxide (H_2O_2) and the uncharged hydroxide group (OH). The first liberates free oxygen in water, while the other tears electrons from other molecules to form the more stable OH^- hydroxide ion.

1. Standard diffusion of species in liquids and solids follows the well known Arrhenius law:

$$D\left(T\right) = D_0 e^{\frac{-E_A}{kT}} \tag{1}$$

where D(T) is the diffusion coefficient in $\left[\frac{m^2}{sec}\right]$, D_0 is the diffusion prefactor, E_A is the activation energy in eV for the species to move, k is Boltzmann's constant, and T is the temperature in Kelvin. Using the data for hydrogen peroxide from this article (see p. 558) and this article for hydroxide ion data (see Table 1), find the values of D_0 and E_A for each molecule's diffusion.

- 2. Calculate the distance that one of each molecule will travel in 10^{-6} seconds at body temperature (37C), or about the time that intracascade reactions stop.
- 3. Suppose that someone has ingested al alpha emitter, perhaps by smoking, which releases 4MeV alpha particles. Which of the two molecules do you expect to do more damage to DNA? You should consider both the amount of each produced, as well as how far they can travel. Develop an expression for the "damage effectiveness" of each of these ions, based on your calculations.
- 4. Graph this "damage effectiveness" as a function of temperature from 32-42C (the range of body temperatures that won't ensure death). Does your answer to (4.3) change with changing temperature? What does this say about your susceptibility to radiation damage if you have a fever of 40C?

5 Spooning (30 points, answer given)

Estimate the additional dose incurred by spooning (see Figure 1) compared to sleeping alone. Use your data from your EHS full body count in your answer.

Courtesy of Val D'Aquila on Flickr. License CC BY-NC-SA.

Figure 1: Spooning

MIT OpenCourseWare https://ocw.mit.edu

22.01 Introduction to Nuclear Engineering and Ionizing Radiation Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.