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October 18, 2016 

Basics of Physics, Kinematics, and Relativity 
√ 1 2 p = mv = 2mT ; T = mv (1)

2 
where p is momentum, m is mass, v is velocity, and T is kinetic energy of a particle. 

hc 
Tγ = (2)

λ 

where h is Planck’s constant, c is the speed of light, and λ is the wavelength of the photon.   
1 1 1 

= Ry − (3)2 2λtransition nfinal ninitial

where n corresponds to the initial and final electron shell levels, depending on the subscript. The Rydberg 
energy is given as follows: 

Z2 4me− ecRyZ = (4)
8E2h3c0

where Z is the number of protons in the nucleus, me− is the rest mass of the electron (511 keV), ec is the 
charge on the electron (1.6 × 10−19C), and E0 is the permittivity of a vacuum to allow electric field lines 
through it. 

1 mrelativistic 
γ =  = (5) 

2 m01 − v
2c

where γ represents the gamma factor for relativistic motion, and m0 is the rest mass of the particle. It is 
used to compute the relativistic mass of a particle traveling at significant fractions (1% and higher) of the 
speed of light: 

2Ttotal = m0γc
2; Tkinetic = (γ − 1) m0c (6) 

Consider the limiting cases here. If a particle is at rest (v=0, γ = 1), then its kinetic energy is zero, and its 
mass is equal to its rest mass. If the particle is travelling at the speed of light, then γ → ∞ and it becomes 
infinitely massive. It also takes an infinite amount of kinetic energy to get a particle with non-zero mass 
moving at the speed of light. 

Nuclear Reactions and Energetics 

A general nuclear reaction proceeds, and is written as follows: 

i + I → f + F + Q; I (i, f) F (7) 
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where i and I represent the small and large initial particles, respectively, f and F represent the small and large 
final particles, respectively (which may not be the same ones), and Q is the energy consumed or liberated 
from the reaction. The last term shown is the shorthand form. 

This Q value is expressible in terms of many things, stemming from conservation of total rest mass energy 
and kinetic energy of the reaction: 

0 
2 2 2 2.Ti + mic + ,, = Tf + mf c (8)TI + mI c + TF + mF c 

Separating the two sets of masses and energies to one side or the other of the equation, it can be written as 
follows: 

2 2 mic + mI c 
2 − mf c 

2 − mF c = Tf + TF − Ti = Q (9) 

where it is assumed that the large, initial particle is at rest, unless we’re in CERN or the large hadron collider 
or something. 

The binding energy of a nucleus in MeV is analogous to the work of separation of its constituent nucleons, 
and can therefore be written as the difference between the masses in amu − c2 of its individual nucleons and 
the assembled nucleus: 

2B.E. (A, Z) = [ZMH + (A − Z) Mn − M (A, Z)] c (10) 

where BE is the binding energy, Z is the proton number, A is the total number of nucleons, Mp is the rest 
mass of the proton, Mn is the rest mass of the neutron, and M(A,Z) is the mass of the nucleus. 

All masses and energies can be equivalently expressed in units of energy, such as keV or 
MeV. To convert between the two, use the following conversion factor:   

931.49 MeV  2M [MeV  ] =  M [amu] × c (11) 
amu − c2

Pro tip: Don’t round masses in amu! All those digits really count. 
The excess mass in amu is the difference in amu between the number of nucleons in a nucleus and its 

actual mass in amu: 
Δ =  M (A, Z) − A (12) 

Note how the excess mass and the binding energy are directly related: 

B.E. (A, Z) = [ZMH + (A − Z) Mn − A − Δ] c 2 (13) 

A semi-empirical estimate of the mass of a nucleus can be found using the liquid drop model of the nucleus: 

2
Z (Z − 1) (A − 2Z)

B.E. (A, Z) =  av A − asA
2/3 − ac 

A1/3 
− aa + apδ (14)

A 

For definitions of the terms, see the Yip book, p. 59, equation 4.10 and the following explanation. 

Radioactive Decay 

Spontaneous radioactive decay implies that Q>0, or that the reaction is exothermic. The opposite case 
would be when the reaction is endothermic, or would consume energy. The latter case requires additional 
energy to be imparted into the system to make the reaction move forward, just like in chemistry. 

Below is a generalized radioactive decay diagram, showing all the potential daughter products (D) re
sulting from the decay of the same parent nuclide (P), courtesy of Ka-Yen Yau: 
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Spontaneous radioactive decay can proceed via a number of mechanisms, including: 

3.1 Alpha (α) Decay 
A 2 
Z P →A−4 D + α; Q [amu] = (MP − MD − Mα) c (15)Z−2 

Alpha particles are emitted monoenergetically, according to allowed transitions. Alpha decay may proceed 
to an excited state, which would allow further isomeric transitions (IT) or internal conversions (IC). 

3.2 Beta (β−) Decay 
A 2 
Z P →A ν; Q [amu] = (MP − MD) c (16)Z+1 D + β− + ¯

Betas and associated antineutrinos are emitted with a continuous spectrum, each having an average and 
maximum energy: 

Beta decay may proceed to an excited state, which would allow further isomeric transitions (IT) or 
internal conversions (IC). 
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3.3 Positron (β+) Decay 
A 2 
Z P →A

Z−1 D + β+ + ν; Q [amu] = (MP − MD − 2me) c (17) 

Positrons and associated neutrinos are emitted with a continuous spectrum, each having an average and 
maximum energy as above, though the intensity of positrons with zero energy begins at zero. Beta decay 
may proceed to an excited state, which would allow further isomeric transitions (IT) or internal conversions 
(IC). Q must be above 1.022 MeV for this reaction to be allowable. This is because in order to 
create a positron, and the associated, emitted electron (to conserve total charge), one must include two times 
the rest mass of the electron, 0.511MeV, just to create the particles necessary for this type of decay to occur. 

3.4 Electron Capture (EC) 
A 
Z P →A Q [amu] = (MP − MD) c (18)Z−1 D; 2 − EBinding 

Instead of emitting a positron, the nucleus may capture an inner-shell electron, binding it with a proton 
to create a neutron. The inner-shell hole is then plugged by higher-energy electrons falling down in energy 
levels, emitting characteristic photons according to Equation 3. These also compete with the emission of 
Auger electrons, which may be ejected from outer shells. 

3.5 Isomeric Transition (IT, γ Decay) 

A nucleus in an excited state may decay by gamma ray emission to a lower energy state, which may or may 
not be the ground state: 

A 
Z P ∗ →A Q [MeV  ] =  Eγ (19)Z P + γ; 

3.6 Internal Conversion (IC) 

This process competes with IT, and involves the ejection of an inner-shell electron with an energy of 
Ee− = Eγ − Ebinding, with the latter given by Equation 3 with a final shell level of ∞. This can also be 
followed by electron shell transitions with characteristic x-rays and/or Auger electrons as above. 

3.7 Spontaneous Fission (SF) 

Big nuclei just blow up sometimes. Even when it is energetically possible, the Q value needs to be high 
enough for the two nuclear pieces to overcome the strong nuclear force barrier and tunnel out of the nucleus. 
Needless to say it is a low-probability reaction, though it does happen for heavier nuclei: 

A 2 
Z P → FP1 + FP2 + η0

1 n; Q [amu] = (M (A, Z) − MFP1 − MFP1 − ηMn) c (20) 

Allowable Nuclear Reactions and the Q-Equation 

The full equation relating Q, the masses, energies, and angles involved in a general nuclear reaction are as 
follows:     

Mf Mi 2  
Tf 1 +  − Ti 1 − − MiMf TiTf cosθ (21)

MF MF MF

Reactions involving fewer particles can be simplified by setting appropriate terms to zero. There are a few 
important implications to this formula: 

1. A necessary and sufficient condition for a reaction to proceed is that the sum of the kinetic energy of 
the incoming particle and the Q-value is positive: 

Ti + Q ≥ 0 (22) 
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2. If a reaction is not allowed on its own (endothermic, Q<0), then there is a threshold energy required
to induce it:

M
Ethreshold = − f +MF

Q
Mf +MF −Mi

≈ −QMi +MI
(23)

MI

Note that energies are always positive, so for a reaction to have a threshold energy, it must be en-
dothermic (Q<0).

3. For other implications, allowed angles, and energies, see Yip, pp. 142-149.

5 Radioactive Decay and Half Life

Activity is defined as follows:
A = λN (24)

where A is the activity in Bq (or Ci, remember that 1 Ci = 3.7 · 1010 Bq), λ is the decay constant in 1/s, and
N is the number of decaying atoms present. Recognizing that:

dN
A = − (25)

dt

we can write:

dN

dt
= −λN

ˆ (
dN
)

=

ˆ
(−λdt) ln (N) = −λt+ C N (t = 0) = N0 N = N0e

−λt (26)
N

The half life
(
t1/2

)
is solved by setting the fraction N equal to 0.5:N0

ln (2)
t1/2 =

λ
equivalently, λ =

ln (2)
(27)

t1/2

6 Series Radioactive Decay

6.1 Core Concepts

The concentration of a particular isotope, or chain of isotopes, can always be written as the balance between
production and destruction:

dNi
= Prod.i

dt
−Destr.i (28)

Production can either be directly from bombarded particles, or from another radioactive decay:

Prod.i = N︸ i−1σcapturei−1︷︷ ︸ Φ + λi 1Ni 1 (29)− −

like an ”artificial λ”

where σ is the cross section, or interaction probability, of capture by a flux Φ of incoming particles, and N
represents a number density of isotope i or i-1. Number densities are calculated as follows:

ρNAv
N = (30)

MM

where ρ is the density, NAv is Avogadro’s number, and MM is the molar mass (or molecular weight). Note
that the macroscopic cross section Σ accounts for both the amount of isotope i-1 present and the probability
that isotope i-1 undergoes a reaction to produce isotope i :

Σ = Nσ (31)



_ __ _ _ __ _ _ __ _ 

6.2 Setting Up a Physical Model 

These can be constructed into a series of differential equations, which can be solved to obtain the concentra
tions of different isotopes. For example, let’s say we have a quantity of isotope N1 at N10, and it decays into 
isotope N2, which also decays into isotope N3. Isotope  N2, however, also captures neutrons (that’s right, 
we’re in a reactor now) with a characteristic cross section σc2 : 

dN1 
= − λ1N1 (32)

dt 

dN2 
= λ1N1 − λ2N2 − N2σc2 Φreactor (33)

dt 
dN3 

= λ2N2 (34)
dt 

Things to keep in mind include: 

1. Cases in which coefficients are wildly different, for example, what happens if λ1 » λ2 or λ1 « λ2? 

2. Behavior during very short times 

3. Finding maximum concentrations of a given isotope, by setting the derivative equal to zero 

6.3 An Example Full Derivation 

Let’s say we have the following nuclear reactions (like on the lecture on October 6th), where we are producing 
60Co from the neutron bombardment of 59Co, and 60Co has its own decay constant λ where it decays by β− 

decay into 60Ni: 
59 n λ−→ 60 −→ 60 
27Co 27Co 28Ni  (35) 

N1 N2 N3 

We also have to account for the fact that both 59Co and 60Co are “burned” in the reactor by capturing 
neutrons. The first reaction produces 60Co, while the second one depletes it. We therefore define a couple 
of neutron capture cross sections: 

2σc59Co 
= σ59 = 20  b σc560 = σ60 = 2  b 1 b = 10−24 cm (36) 

where we have looked up the values of the cross sections from the JANIS database, using the ENDF VII 
library for incident neutron data, and we’ve chosen the values at 0.025eV (the kinetic energy of thermal 
neutrons). Let’s just pretend that our reactor has only thermal neutrons in it, a “one group” approximation. 
Oh, let’s also define the neutron flux of our reactor, or the number of neutrons zipping through every square 
centimeter per second: 

n 
Φ = 1014 (37) 

cm2s 

We next look up the half life of 60Co, and use Equation 27 to get its decay constant: 

ln (2) −1t1/2 = 1925.4 days = 1.66 · 108 s λ = = 4.17 · 10−9 s (38)
1.66 · 108s 

Finally, we have to define some initial amount of 59Co that we put into our reactor. Let’s just say it was 
100g of 59Co, or 1.69 moles, or 1024 atoms: 

N10 = 1024atoms (39) 

Finally we are ready to construct our differential equations to physically model this real system. First, we 
recognize from the KAERI Table of Nuclides that 59Co is stable, so it has no production term, and the only 
way for it to be destroyed is to be “burned” by neutron capture: 

dN1 
= − σ59ΦN1 (40)

dt 
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Next, the production rate of 60Co is equal to the destruction rate of 59Co, while 60Co can be destroyed both
by natural radioactive decay and artificial “burning:”

dN2

dt
= σ59ΦN1 − σ60ΦN2 − λN2

dN2
= σ59ΦN1 − (λ+ σ60Φ)N2 (41)

dt

Finally, the only way to produce 60Ni is by radioactive decay of 60Co. Note that “burning” 60Co does NOT
produce 60Ni:

dN3
= σ60ΦN2 (42)

dt

Here we are ignoring the “burning” of 60Ni. In fact, let’s just ignore 60Ni altogether, because we don’t care
about it: XX3 ���dN X

��
�X�XXX
= σ60ΦN2 (43)

dt

Now we start with the easy equation for N1 (t). Note that the quantity σ59Φ has the same units as λ, so
the equation takes the same form:

dN1

dt
= (−σ59Φ)N1

ˆ (
dN1

)
=

ˆ
(−σ σ Φ

59Φ) dt N1 (t = 0) = N10 N 59 t
1 (t) = N10e

− (44)
N1

Now we take this expression for N1 and substitute it into Equation 41:

dN2
= σ59ΦN 59

10e
−σ Φt − (λ+ σ60Φ)N2 (45)

dt

Next we rearrange terms so that all the stuff is on one side of the equation:

dN2
+ (λ+ σ Φ)N − σ ΦN e−σ59Φt

60 2 59 10 = 0 (46)
dt

Next we introduce our integrating factor, µ:

µ = e
´

(λ+σ60Φ)dt = e(λ+σ60Φ)t (47)

and we multiply every term in Equation 46 by µ:(
dN2

)
e(λ+σ60Φ)t + ((λ+ σ Φ)N ) e(λ+σ60Φ)t −

(
σ ΦN e−σ59Φt

)
e(λ+σ60Φ)t

60 2 59 10 = (48)
dt

We recognize that our first two terms look eerily similar to the end result of the Product Rule:

d (a (t) b (t))

dt
= a (t)

db (t)

dt
+
da (t)

b (t) equivalently (ab)
′

= ab′ + a′b (49)
dt

We then smoosh the first two terms of Equation 48 together using the Product Rule in reverse, and combine
the exponential parts of the third term:

d
(
N2e

(λ+σ60Φ)t
)

= σ59ΦN +
10e

((λ σ60Φ)−σ59Φ)t (50)
dt

We then integrate both sides:

ˆ (
d
(
N2e

(λ+σ60Φ)t
)

dt = σ 59Φ)t
59ΦN10e

((λ+σ60Φ)−σ dt (51)
dt

) ˆ ( )
This just kills the derivative on the left hand side, puts the exponential term in the denominator on the right
hand side, and introduces a constant of integration:

N2e
(λ+σ60Φ)t σ59ΦN10

= e((λ+σ60Φ)−σ59Φ)t + C (52)
((λ+ σ60Φ)− σ59Φ)
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We now use the initial condition that we had no 60Co when we first started producing it at t = 0:

0 1

�>N (t = 0) = 0 �N e(λ+σ60Φ)���t σ59ΦN10
2 2 =

0

λ 59Φ)���e(( +σ60Φ)−σ t + C (53)
((λ+ σ60Φ)− σ59Φ)

��:�0
���

�
(0)�e

(λ+σ60Φ)(1) σ59ΦN10
=

((λ+ σ60Φ)− σ59Φ)��
��

���
��:1

e((λ+σ60Φ)−σ59Φ)(0) + C (54)

0 =
σ59ΦN10 σ

+ C C =
− 59ΦN10

((λ+ σ60Φ)− σ59Φ)
(55)

((λ+ σ60Φ)− σ59Φ)

We finally plug this integration constant back into Equation 52 and do a bit of rearranging:

N2e
(λ+σ60Φ)t σ59ΦN10

=
((λ+ σ60Φ)− σ59Φ)

e((λ+σ60Φ)−σ59Φ)t − σ59ΦN10
(56)

((λ+ σ60Φ)− σ59Φ)

N2e
(λ+σ60Φ)t σ59ΦN10

= e((λ+σ60Φ)−σ59Φ)t 1 (57)
((λ+ σ60Φ) 59Φ)

−
− σ

��

[ ]
N2�e

(λ�+σ�60Φ)t

���
��

e(λ+σ60Φ)t
=

σ59ΦN10

((λ+ σ60Φ)− σ59Φ)

[
e(��

��(λ+σ60Φ)−σ59Φ)t

���
��

e(λ+σ60Φ)t
− 1

(58)
e(λ+σ60Φ)t

]
σ59ΦN10

N2 (t) =
((λ+ σ60Φ)− σ59Φ)

[
e(−σ59Φ)t − 1

e(λ+σ60Φ)t

]
(59)

N2 (t) =
σ59ΦN10

e−(σ59Φ)t e−(λ+σ60Φ)t (60)
((λ+ σ60Φ)− σ59Φ)

−

Not surprisingly, this looks exactly like Equation 4.40 from

[
the Turner book:

]

λ1N10
N2 (t) = e−λ1t e−λ2t (61)

(λ2 − λ1)
−

where we have defined λ1 = σ59Φ and λ2 = λ+ σ

[ ]
60Φ. Now let’s start plugging in some of the values:(

24 �2
)(

14 n
λ1 = σ59Φ = 20 · 10− �cm 10

��cm2s

)
= 2 · 10−9s−1 (62)

λ2 = λ+ σ60Φ =

(
4.17 · 10−9 1 �+

s

) (
2 · 10−24�cm2

)(
1014 n 9

� =
cm2s

)
4.37 · 10− s−1 (63)

�

How we plug these values into Equation 61:

N2 (t) =

(
2 · 10−9 ��s−1

) (
1024atoms

)(
4.37 · 10−9��s−1 − 2 · 10−9��s−1

) [e−(2·10−9s−1)t − e−(4.37·10−9s−1)t
]

(64)

N2 (t) =

(
2 · 1015atoms

)
−( (4.37·10−9s−1

e 2·10−9s−1)t e− )t (65)
(2.37 · 10−9s−1)

[
−

We can then graph this situation using Desmos:

]

8



Note that the x-axis is in seconds, and the y-axis is in atoms. This shows you that it takes about 3 · 108 

seconds, or 10 years, to reach a maximum inventory of 60Co in the reactor. A very real example, using actual 
numbers, from a very theoretical derivation! 
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