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Imaging Definitions
 

Object function - the real space description 
of the actual object. 

Resolution - the collected image is only an 
approximation of the actual 
object. The resolution 
describes how accurate the 
spatial mapping is. 

Distortions - describes any important non­
linearities in the image. If 
there are no distortions, then 
the resolution is the same 
everywhere. 

Fuzziness - describes how well we have described the object we wish to image. 
Contrast - describes how clearly we can differentiate various parts of the object 

in the image. 
Signal to Noise ratio 



Imaging Definitions 

There are two very basic problems in image analysis: 

1.	 Given the data, an estimation of the instrument function and a (statistical) model of 
the noise, recover the information (an estimation of the object function), 

2. Employing a suitable model, interpret this information. 

So here our goals are: 

1. Design an algorithm to compute the object function given certain data on the scattering 
field, an estimation of the point spread function, and an estimation of the 
experimental noise. 

2. Find a way of recovering an appropriate set of material parameters from the object 
function, 

3. Set up the experiment such that object function reflects the parameter of interest, 
4. Design the experiment such that the imaging experiment closely approximates a linear 

system (or that the non-linearities are dealt with correctly) and such that the point 
spread function is narrow and of definite shape. 



Linear Imaging Systems
 
A model of the imaging process is needed to extract spatial information from a measured 
signal. For most of this course we will be concerned with a deceptively simple linear model 

Image = Object Function⊗ Point Spread Function + Noise 

This is the basis expression for linear imaging. The Point Spread Function depends on the 
type and properties of the imaging system, and the Object Function depends on the physical 
interactions of the object and the scattering wave. 

The noise is an important consideration since it limits the usefulness of deconvolution 
procedures aimed at reversing the blurring effects of the image measurement. 

If the blurring of the object function that is introduced by the imaging processes is spatially 
uniform, then the image may be described as a linear mapping of the object function. 

This mapping is of course at lower resolution, and the blurring is readily described as a 
convolution of the object function with a Point Spread Function. 



Linear Imaging Systems
 

Image = object ⊗ Point Spread Function + noise
 

O ⊗ P = ∫∫ 
−∞ 

∞ 
O( x)P( x'−x)dx 

A convolution is a linear blurring. Every point in P is shifted, mapped and added to 
the output corresponding to the shape of O. 



Linear Imaging Systems
 

Consider the simple model, a plane of sources I(x,y) mapped onto a plane of 
 
detectors E(x,y).
 
The detectors measure photon intensity (energy) and do so in a linear fashion (if 
 
twice the photon intensity impinges on the detector it returns a signal twice as 
 
large).
 
Question: what would happen if the detectors saturated?
 



Linear Imaging Systems
 

There is a mapping from the source to the detector, 

E( x, y) = S{I ( x, y)} 

and the mapping is a linear functional so, 

S aI1( x, y) + bI2(x, y)}= S aI1(x, y)}+ S bI 2(x, y)}{ { { 

a and b are scalars.
 



Linear Imaging Systems
 

When we model the system as a linear functional then it is useful to introduce a 
 
point source and to decompose the system into these. The point source can select
 
out every element of the input and follow how each element is mapped.
 
The benefit is that by focusing on how the points map we don’t need to include the 
 
object function in our analysis of the imaging process.
 



The Delta Function
 

The delta function allows a simple formal approach to the decomposition of the
 
image.
 
In 1 dimension,
 

 0; x ≠ 0
δ( x) =  

∞; x = 0
 

The delta function is thus a singularity and has the following convenient properties: 
∞ 
∫ δ(x)dx = 1 

−∞ 

It is normalized and can select out a point of a second function, 

∞ 
∫ f ( x)δ(x)dx = f (0) 

−∞ 

provided f(x) is continuous in the neighborhood of x=0.
 



The Delta Function 

The delta function also allows sampling at frequencies other than x=0, 

 0; x ≠ x0δ( x − x0 ) =  
0∞; x = x 

∞ 
∫ f ( x)δ(x − x0 )dx = f (x0 ) 

−∞ 

So we can use the delta function to sample the object function anywhere in space. 



The Delta Function 

It is useful to introduce some more physical representations of the delta function: 

π
sinc αx ( ) = 

sin(x)
 
lim α e−πα 2 x 2 

lim 
α ( );  sinc x
 

α→∞ α→∞ x
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Using these definitions you can show the various properties of the delta function. 




The Delta Function
 

In[1]:= g@a_ D : = Plot @a Exp @- Pi a ^ 2 x ^ 2D, 8x ,  - 2 , 2 <, 
8PlotRange -> All , PlotStyle -> Thickness @0.01 D, 
DisplayFunction -> Identity <D; 

In[2]:= Show @Table @g@4 ê H2 ^ nLD, 8n, 1 ,  5 <D, 
DisplayFunction -> $DisplayFunction D 
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Out[2]= Ö GraphicsÖ 



The Delta Function
 

In[3]:= sinc @x_ D : = Sin @xDê x ; 

In[4]:= s @a_ D : = Plot @a sinc @a xDê Pi , 8x , - 2 , 2 <, 
8PlotRange -> All , PlotStyle -> Thickness @0.01 D, 
DisplayFunction -> Identity <D; 

In[7]:= Show @Table @s @32 ê H2 ^ nLD, 8n, 1 , 5 <D, 
DisplayFunction -> $DisplayFunction D 
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Out[7]= Ö GraphicsÖ 



The Delta Function in 2D
 

The delta function is also straightforward to define in 2 dimensions, 
 0; r ≠ r0δ2(r − r0 ) =  
∞; r = r0 

where 

r = xx̂ + yŷ r0 = x0 x̂ + y0 ŷ 

x̂ and ŷ are unit vectors. 
The 2-dimensional delta function is therefore separable, 

δ2(r − r0 ) =δ(x − x0 )δ( y − y0 ) 

We can also define the 2D delta function in cylindrical coordinates and this will be 
important for projection reconstruction, vida infra. 



Linear Imaging Systems
 

Now that we have this useful construct of a delta function, let us return to our 
imaging system and decompose the plane of sources I(x,y). So any point in the 
source can be extracted as: 

∞ 

I ( x0, y0 ) = ∫∫ I ( x, y)δ(x − x0 )δ( y − y0)dxdy 
−∞ 



Linear Imaging Systems
 

We know the output of that point, 

E0 (x, y) = S{I (x0, y0)}
 
Now notice that E is a continuous function over the detector plane, and so I have 
labeled the function by the position in the source plane. 



Linear Imaging Systems 

Now let us just explicitly write out the function: 

 ∞  
 
 


E0 (x, y) = S ∫∫ I (x, y)δ(x − x0)δ(y − y0 )dxdy
 
 

 −∞ 
 

Since S and the integrations are all linear we can change their order. 

∞ 

E0 (x, y) = ∫∫ I (x, y)S{δ(x − x0 )δ( y − y0 )}dxdy 
−∞ 

Now we see that the mapping is described for each point in the object function, and 
that the object function itself simply provides a weight for that point. Of course it is 
essential that S be linear. 



Instrument Response Function
 

Now we picture every point as being mapped onto the detector independently. The 
mapping is called the instrument response function (IRF).∞ 

E0 (x, y) = ∫∫ I (x, y)S{δ(x − x0 )δ(y − y0 )}dxdy 
−∞ 

∞ 

E0 (x, y) = ∫∫ I (x, y)IRF(x, y | x0, y0 )dxdy 
−∞ 



Instrument Response Function 
The Instrument Response Function is a conditional mapping, the form of the map 
depends on the point that is being mapped. 

IRF(x, y | x0, y0 ) = S{δ(x − x0 )δ(y − y0 )}
 

This is often given the symbol h(r|r’). 

Of course we want the entire output from the whole object function, 
∞ ∞ 

E( x, y) = ∫∫ ∫∫ I(x, y)S{δ( x − x0 )δ(y − y0 )}dxdydx0dy0 
−∞ −∞ 

∞ ∞ 

E( x, y) = ∫∫ ∫∫ I(x, y)IRF(x, y | x0, y0 )dxdydx0dy0 
−∞ −∞ 

and so we need to know the IRF at all points.
 



Space Invariance 

Now in addition to every point being mapped independently onto the detector, 
imaging that the form of the mapping does not vary over space (is independent of 
r0). Such a mapping is called isoplantic. For this case the instrument response 
function is not conditional. 

IRF(x, y | x0, y0 ) = PSF(x − x0, y − y0 ) 

The Point Spread Function (PSF) is a spatially invariant approximation of the IRF.
 



Point Spread Function 

So now in terms of the Point Spread Function we see that the image is a convolution 
of the object function and the Point Spread Function.

∞ 

E( x, y) = ∫∫ I (x, y)PSF(x − x0, y − y0 )dx0dy0 
−∞ 

Here I have neglected noise, but in real systems we can not do that. 



Magnification
 

A system that magnifies initially looks like it should not be linear, but the mapping 
can also be written as a convolution. The IRF of course must include the 
magnification (M),IRF(x, y | x0, y0 ) = PSF(x − Mx0, y − My0 ) 

and the image is, ∞ 

E( x, y) = ∫∫ I (x, y)PSF(x − Mx0, y − My0 )dx0dy0 
−∞ 



Magnification
 

A simple change of variables, x0 → Mx0 
y0 → My0 

Lets us rewrite the image as: 
∞ 

E( x, y) = 
1

2 ∫∫ I ( x
M 

)PSF(x − x0, y − y0 )dx0dy0
M M 

, y 

−∞ 
And the imaging system is again correctly described as a convolution. We also 
directly see that as the image is magnified its intensity decreases. 



An Example, the Pin-hole Camera 

One of the most familiar imaging devices is a pin-hole camera. 

a b 

object function pin-hole image 
source 

The object is magnified and inverted. Magnification = -b/a 
Known prior to della Porta ca. 1600. 



DensityPlot @arrow @x , yD, 8x , - 128 , 128 <, 8y , - 128 , 128 <,
8PlotPoints -> 8128 , 128 <, Mesh -> False <D
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The Pin-hole Camera, Magnification
arrow @x_ , y_ D : = If @Abs @xD <= 5 &&Abs @yD <= 20 , 1 , 0D +

If @y > 20 &&y <= 30 &&Abs @xD < Abs @30 - yD, 1 , 0D;

Provides the mapping for an ideal pin-hole camera:
a = source to pinhole (on axis)
b= pinhole to screen (on axis)

a = 10 ;
b = 40 ;

mag = - Hb ê aL;

Idealarrow @x_ , y_ D : = H1 ê mag ^ 2L * arrow @x ê mag , y ê magD;

DensityPlot @Idealarrow @x , yD, 8x , - 128 , 128 <, 8y , - 128 , 128 <,
8PlotPoints -> 8128 , 128 <, Mesh -> False <D
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An Example, the Pin-hole Camera 2

Notice, however, that the object function is also blurred due to the 
finite width of the pin-hole.

a b

object function
source

pin-hole image

The extent of blurring is to multiply each element of the source by the 
“source magnification factor” of (a+b)/a x diameter of the pin-hole.



Pin-hole Camera Blurring in 1D
Adds a finite diameter pin-hole but assumes that the response in spatially uniform 
(defines a convolution integral).

r = 2 ;

h@DR_D : = If @Abs @DRD<= r Ha + bLê b, 1.0 , 0.0 D;

Plot @h@DRD, 8DR, - 10 , 10 <, 8PlotRange -> All <D
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In[8]:= Plot3D @h@yD * h@x - yD, 8x , - 10 , 10 <, 8y , - 10 , 10 <, 8Mesh -> False , PlotPoints -> 8128 , 128 <<D



Pin-hole Camera Blurring in 1D
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In[8]:= Plot3D @h@yD * h@x - yD, 8x , - 10 , 10 <, 8y , - 10 , 10 <, 8Mesh -> False , PlotPoints -> 8128 , 128 <<D
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Pin-hole Camera Blurring in 1D for a grid
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Distortions of a Pin-hole Camera

Even as simple a device as the pin-hole camera has distortions
1. Limited field of view due to the finite thickness of the screen.

a b

object function
source

pin-hole image

As the object becomes too large, the ray approaches the pin-hole too 
steeply to make it through.



Distortions of a Pin-hole Camera 2

Also, as the object moves off the center line, the shadow on the
detector grows in area, (and the solid angle is decreased) so the image 
intensity is reduced.

There are three effects, radial distance cos^2, oblique angle cos, and 
effective size of pinhole cos.  Therefore cos^4.  The general oblique 
angle effect goes as cos^3.

a b

object function
source

pin-hole image



Distortions of a Pin-hole Camera 

Reduction in field of view due to oblique angle effect.
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Contrast and Noise in a Pin-hole Camera 

For a screen of finite thickness some light will penetrate.
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Full 2D analysis

Object function
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