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Reciprocal Space

In[1]:= face =80, 0, 0, 0, 2, 4, .7, 9,12, 2., 25,31, 325,32, 31, 29, 29, 3, 31,
29 , 28,227,206, 28,29 ,3,29,27,23,21,17,14,12,1, 8, 8, .7,
J, 65, 6, 5, 4, 3,2,.1,0°0,0,0, 0<;
In[33]:= ListPlot (@ace , PlotJoined -> True , Axes -> False , PlotStyle -> Thickness (@.01 DD
10}
5F
50 100 50 200 250
-5}
-10¢F
In[3]:= periodic = Join (dace , face , face , face , face , 80<D;
In5]:= f = Fourier (@periodic D;
In[6]:= ListPlot @RotateLeft @e@ D, 128 D, PlotJoined -> True , PlotRange => All ,
PlotStyle -> Thickness @.01 DD
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Reconstruction

filter @ _D:=Table @f @ <n, 1, If @ >256 - n, 1, ODD, 8i, 1, 256 <D;

expand (@_ D : = ListPlot @l'ake @Re @ ourier @ filter @DDD, 54 D,
8PlotJoined -> True , PlotRange > All , Axes -> False , PlotStyle -> Thickness @.01 D,
DisplayFunction -> Identity <D
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Fourier Transforms

For a complete story see:
Brigham “Fast Fourier Transform™
Here we want to cover the practical aspects of Fourier Transforms.

Define the Fourier Transform as:

G =3 {e()} = | glr)e s

—00

There are slight variations on this definition (factors of m and the
sign in the exponent), we will revisit these latter, i=V-1.

Also recall that .
e M = cos(kx)— isin(kx)



Reciprocal variables

k 1s a wave-number and has units that are reciprocal to x:
X ->Ccm
k -> 2m/cm
So while x describes a position in space, k describes a spatial
modulation.
Reciprocal variables are also called conjugate variables.

Another pair of conjugate variables are time and angular frequency.



Conditions for the Fourier Transform to Exist

The sufficient condition for the Fourier transform to exist is that the
function g(x) 1s square integrable,

Tlg(Jc)l2 dx < oo

o0

g(x) may be singular or discontinuous and still have a well defined
Fourier transform.



The Fourier transform is complex

The Fourier transform G(k) and the original function g(x) are both in
general complex.

318(x)} =G, (k)+iG;(k)

The Fourier transform can be written as,

J{g(x) = G(k)= A(k)e®®)

A=|G|=G? +G?
A = amplitude spectrum, or magnitude spectrum

® = phase spectrum

A% =GP =G?2 +G? = power spectrum



The Fourier transform when g(x) 1s real

The Fourier transform G(k) has a particularly simple form when g(x)
1s purely real

G, (k)= | g(x)cos(hx)dx

—00

Gi(k)= | g(x)sinir)dx

o0

So the real part of the Fourier transform reports on the even part of
g(x) and the imaginary part on the odd part of g(x).



The Fourier transform of a delta function

The Fourier transform of a delta function should help to convince
you that the Fourier transform is quite general (since we can build
functions from delta functions).

3{o(x)}= T 5(x)e_ikxdx
—00
The delta function picks out the zero frequency value,

3{o(x)}= e k0 =1

Ax)e=1




The Fourier transform of a delta function

So 1t take all spatial frequencies to create a delta function.

In[1]:= delta (@_, x_ D=Sum@Cos @ xD, 8k, -n, n, 1<Dj

In[7]:= Plot (@lelta @, xD, 8x, -3, 3<, PlotRange => All ,
PlotStyle -> Thickness @.01 DD
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QuickTime™ and a
Animation decompressor
are needed to see this picture.




The Fourier transform

The fact that the Fourier transform of a delta function exists shows
that the FT 1s complete.

The basis set of functions (sin and cos) are also orthogonal.

Tcos(klx) cos(kyx)dx =0(ky —ky)

—00

So think of the Fourier transform as picking out the unique spectrum
of coefficients (weights) of the sines and cosines.



The Fourier transform of the TopHat Function

Define the TopHat function as,

o {l;x <1

X)=

& O; x| >1

The Fourier transform 1s,  G(k)= T g(x)e_ikx dx
—00

which reduces to,

sin(k)

G(k)=2 } cos(kx)dx =2
0

= 2sinc(k)



The Fourier transform of the TopHat Function

1;
- 0; 1x

<1

For the TopHat function { X
g(x)=

> 1

sin(k)

The Fourier transform 1is, G(k)= 2} cos(kox)dx =2
0

= 2sinc(k)




The Fourier reconstruction of the TopHat Function

20X \/ - \/ N T 1_5:

-0.5

In[33]:= square @_, x D:=
2 + Sum@® Sin @Dé kL * Cos @k xD, 8k, 1, n<D;

In[36]:= Table @Plot @quare @, xD, 8x, -2, 2<,
PlotRange > All , PlotStyle -> Thickness (@.01 DD,
8n, 0, 128 <D




The Fourier transform of a cosine Function

Define the cosine function as,
g(x)=cos(kpx)

where k, 1s the wave-number of the original function.
The Fourier transform 1is, ,
G(k)= Tcos(kox)e_lkxdx
which reduces to, —0

G(k)= Tcos(kox) cos(kx)dx = m{dk —ko)+ ok+ky)}
—00
cosine 1s real and even, and so the Fourier transform i1s also real and
even. Two delta functions since we can not tell the sign of the spatial
frequency.



The Fourier transform of a sine Function

Define the sine function as,
g(x) = sin(kox)

where k, 1s the wave-number of the original function.
The Fourier transform 1is, ,
G(k)= Tsin(kox)e‘l’“dx
which reduces to, —0

G(k)=1 Tsin(kox) sin(kx)dx =im{(k+ko)— Xk —kg)}
sine 1s real and odd, and so the Fourier transform 1s imaginary and
odd. Two delta functions since we can not tell the sign of the spatial
frequency.



Telling the sense of rotation

Looking at a cosine or sine alone one can not tell the sense of
rotation (only the frequency) but if you have both then the sign
1S measurable.



Symmetry

Even/odd
if g(x) = g(-x), then G(k) = G(-k)
if g(x) = -g(-x), then G(k) = -G(-k)
Conjugate symmetry
if g(x) 1s purely real and even, then G(k) 1s purely real.
if g(x) 1s purely real and odd, then G(k) 1s purely imaginary.
if g(x) 1s purely imaginary and even, then G(k) is purely imaginary.
if g(x) 1s purely imaginary and odd, then G(k) is purely real.



The Fourier transform of the sign function

The sign function 1s important in filtering applications, it 1s defined

as, ( ) {1,X>O
SEN(X ) =
s —1;x<0

The FT 1s calculated by expanding about the origin,

S{sgn(x)}= _—kzi



The Fourier transform of the Heaviside function

The Heaviside (or step) function can be explored using the result of
the sign function !

O@x) = [1+sgn(x)]

(g3

SO0} = 75~

The FT 1s then,

3{O(x)} = J{ [1+ sgn(x)]}



The shift theorem

Consider the conjugate pair,

3{g(x)}=G(k)

what is the FT of  3{g(x—a)}

S{g(x—a)}= Tg(x —a)e ™y
rewrite as, e
— Tg(x . a)e—ik(x—a)e—ikad(x . a)

—00
The new term 1s not a function of x,

S{g(x—a)}= e kG (k)
so you pick up a frequency dependent phase shift.



The shift theorem

In[18]:= d : = Table @lable @os @ x + n2 Pi ¢ 16 D, 8n, 0, 15<,

8x, -10, 20 €& 63 <DD;
In[35]:= f = Table (@RotateLeft

ListPlot3D

@, 8PlotRange

@d@aDDD, 32D, $n, 1, -
1<, Mesh -> False <l
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The similarity theorem

Consider the conjugate pair, 3{g(x)}=G(k)

what is the FT of S3{g(ax)}

SF{g(ax)}= T o(ax)e " dx = ! T g(ax)e—l;axd (ax)
— a —

o0 o0

Sfg(@)} == 6()

so the Fourier transform scales inversely with the scaling of g(x).



The similarity theorem
In[3]:= square = Table @ 3

Table @f @ <64 -n, 0, If @ >64 +n, 0, 1DD, 8x, 1, 128 <D,
8n, 1, 16 <D;

In[13]:= f = Table @ 3

RotateLeft @ ourier (@RotateLeft @quare @mDD, 64 DD, 64 D,
8n, 1, 16 <D




The similarity theorem




Rayleigh’s theorem

Also called the energy theorem,

TlePax= TGP dwm

The amount of energy (the weight) of the spectrum is not changed
by looking at it in reciprocal space.

In other words, you can make the same measurement in either real or
reciprocal space.



The zero frequency point

Also weight of the zero frequency point corresponds to the total
integrated area of the function g(x)

S = | g@e ™y = | gy
— k=0 o



The Inverse Fourier Transform

Given a function 1n reciprocal space G(k) we can return to direct
space by the inverse FT,

20=3" {6k} == [ G ar

o0

To show this, recall that G(k)= T g(x)e_ikx dx

—00

1 TG(k)eikx'dk 1 T dx g(x) Teik(x'_x)dk
2T 2

—00 —Q00

o /

2n8(x'—x)
g(x")

.




The Fourier transform in 2 dimensions

The Fourier transform can act in any number of dimensions,

—1ik i
38y, = [ Tg(x,y)e e ey

—00 —00

[t 1s separable

38y, = 31825, I1g(x.0),,

and the order does not matter.



Central Slice Theorem

The equivalence of the zero-frequency rule in 2D 1s the central slice
theorem.

0 T Tg(x,y)e_iky Y& K5 dxdy

gy,

or Kx= T X ky=0
XU o o0 k=0

So a slice of the 2-D FT that passes through the origin corresponds
to the 1 D FT of the projection in real space.



Filtering

We can change the information content in the image by
manipulating the information 1n reciprocal space.

Weighting function in k-space.




Filtering

We can also emphasis the high frequency components.

Weighting function in k-space.




Modulation transfer function

i(x,y) = o(x,y)® PSF(x,y) + noise

) g ) )
[(ky,k),)=O(ky,ky) MTF(k,,k,)+ 3{noise}



