Electrochemical Approaches to Electrical Energy Storage

Donald R. Sadoway

Department of Materials Science & Engineering Massachusetts Institute of Technology Cambridge, MA 02139-4307

outline

the energy storage landscape

an electrometallurgical approach to large-scale storage

portable storage: beyond lithium

misconceptions about batteries

o not much has changed: not true!

electrical	energy	storage
	<mark>(Wh/kg)</mark>	(MJ/kg)
lead acid	<mark>35</mark>	0_13
NiCd	45	0.16
NaS	<mark>80</mark>	0.28
NiMH	<mark>90</mark>	0.32
Li ion	150	0.54
gasoline	12000	43

misconceptions about batteries

o not much has changed: not true!

 no Moore's Law (transistor count 2x every 2 years):
 the battery is an electrochemical device
 2 interfacial reactions, each drawing upon reagents transported from contiguous volumes
 mass and charge transport required
 all microelectronics are silicon-based:

device performance improvements come from better manufacturing capabilities

all new batteries are based on entirely new chemistries
 radical innovation

different approaches for different applications

- don't pay for attributes you don't need
- cell phone needs to be idiot-proof
- car needs to be crashworthy
- safety is a premium in both applications
- how about service temperature?
 human contact?
- stationary batteries: more freedom in choice of chemistry but very low price point

market price points

APPLICATION

laptop computer

communications

automobile traction

stationary storage

PRICE POINT

\$2,000 - \$3,000 / kWh \$1,000 / kWh \$100 - 200 / kWh \$50 / kWh

severity of service conditions

storage is the key enabler

- for deployment of renewables: unless their intermittency can be addressed they cannot contribute to baseload
 even if you had 100% conversion efficiency in photovoltaics they still wouldn't make it in much of the marketplace
- in grid-level storage we need to think about the problem differently when combustion is an option:
 - batteries invented for portable applications are not scalable at an acceptable price point
 - stringing together thousands of Li-ion batteries won't do: here the whole is less than the sum of its parts

storage is the key enabler

smart grid requires rapid response capability
 colossal electric cache

August 13, 2003 9:21 p.m. EDT

August 14, 2003 9:03 p.m. EDT

Images by NOAA/DMSP.

storage is the key enabler

smart grid requires rapid response capability
 colossal electric cache

transmission line congestion
 colossal electric cache

load leveling
 colossal electric cache

load following
 colossal electric cache

accelerating the rate of discovery

there is plenty of room at the top:
 we are not up against any natural laws of nature yet
 time to start thinking beyond lithium

 the field is woefully underfunded by government: energy research in total \$1.4B (2006) < ¹/₆ 1979 figure c.f. medical research rose by 4× to \$29B

 the private sector research spending is even bleaker: US energy industry < 0.25% revenues
 c.f. pharmaceuticals 18% semiconductors 16% automotive 3%

accelerating the rate of discovery

more money I more people
 sustained effort I the brightest minds

 new approaches: computational materials science
 Volta partners with Schrödinger, i.e., bring quantum mechanics to battery engineering
 high-throughput computing screens candidate materials before lab testing begins

 confine chemistry to earth-abundant elements readily available, i.e., not to those potentially subject to cartel pricing

how to think about inventing in this space

 look at the economy of scale of modern electrometallurgy: aluminium smelter

- bauxite, cryolite, petroleum coke, capital cost of \$5000/annual tonne, 14 kWh/kg
 virgin metal for less than \$1.00/kg
- how is this possible?

we don't make aluminium in little beakers

 to make metal by the tonne we have giant cells, literally large halls in which liquid metal pools on a single cathode spread over the entire floor

a modern aluminium smelter

(No Model.)

C. M. HALL. PROCESS OF ELECTROLYZING CRUDE SALTS OF ALUMINIUM. No. 400,666. Patented Apr. 2, 1889.

& Mewell. F. & Gaither.

INVENTOR, Charles M. Hall by Danum b. Wolcott, Att. y.

UNITED STATES PATENT OFFICE.

CHARLES M. HALL, OF OBERLIN, OHIO.

PROCESS OF ELECTROLYZING CRUDE SALTS OF ALUMINIUM.

SPECIFICATION forming part of Letters Patcnt No. 400,666, dated April 2, 1889.

Application filed August 17, 1888. Serial No. 282,955. (No specimens.

To all whom it may concern:

Be it known that I, CHARLES M. HALL, a citizen of the United States, residing at Oberlin, in the county of Lorain and State of Ohio, have invented or discovered certain new and useful Improvements in the Manufacture of Aluminium by Electrolysis of its Fused Salts, of which improvements the following is a specification.

In applications filed July 9, 1886, and February 2, 1887, and serially numbered 207,601 and 226,206, respectively, I have described and claimed processes for the reduction of aluminium by dissolving alumina in a bath
 formed of a fused fluoride salt of aluminium and then separating the aluminium by an electric current. In the process described in application, Serial No. 207,601, I employed a bath formed of the fluorides of 20 sodium and aluminium, (represented by the

compound, which occurs sooner in the bath composed of the fluorides of sodium and aluminium than in that composed of the fluorides of potassium and aluminium, necessitates a comparatively frequent renewal of the bath.

The object of the invention described herein is to provide a bath wherein the objections heretofore mentioned do not obtain, and which 60 can be used continuously without changes or renewal, except to supply loss occurring from evaporation.

In the accompanying drawings forming a part of this specification is shown a construc- 65 tion of apparatus applicable for carrying out my improved process.

In the practice of the present invention I form an electrolyte or bath of the fluorides of calcium, sodium, and aluminium, the fluor- 70 ides of calcium and sodium being obtained in the form of fluor-spar and cryolite, respect-

5,00019 D/25 175,711 / INDEXÉ E DE BREVETS & PAT MÉMOIRE DESCRIPTIF déposé à l'appui d'une demande d'un Brevet d'unention de Quinze Huss Pour Tracéde électrolytique pour la préparation de l'aluminium Shink and Par Montine Soul Juit Coultain Coroller, Représenté par ELETRY FRÈRES, Ingénieurs Civils. 00 En principe, ils provide que je désire Brereter pour de préparan

how to think about inventing in this space: pose the right question start with a giant current sink

convert this...

aluminium potline 350,000 A, 4 V ...into this

Image by MIT OpenCourseWare. Adapted from Donald Sadoway.

The result of work started 3 years ago under sponsorship by the MIT Deshpande Center and the Chesonis Family Foundation:

reversible ambipolar electrolysis, a.k.a., **liquid metal battery**

Image by MIT OpenCourseWare

cell section after cycling 48 h at 700°C

attributes of all-liquid battery

 all-liquid construction eliminates reliance on solid-state diffusion
 Iong service life

 liquid-liquid interfaces are kinetically the fastest in all of electrochemistry
 low activation overvoltage

attributes of all-liquid battery

 all-liquid construction eliminates any reliance on solid-state diffusion
 Iong service life

 liquid-liquid interfaces are kinetically the fastest in all of electrochemistry
 low activation overvoltage

all-liquid configuration is self-assembling expected to be scalable at low cost

			Candidate electrode metals				Rejection criteria										TT
H		Nagatina alastroda					Non-meta	1								Не	
			Negative electrode					Radioactive, rare, toxic, sublimates									
Li Be			Positive electrode				Expensive (> \$ 400 / kg)					С	N	0	F	Ne	
			-					High melting point (> 1000 °C)									
N								Multiple of	oxidation s	tates		4.1	с:	П	a	01	A
INa	Ng												51	Р	2	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ra	Ιa	Цr	Та	W	Rο	Os	Ir	Dt	Δ 11	Ha	T1	Ph	Ri	Po	Λt	Pn
Co	Da	La	111	14	vv	KU	05	п	Ιι	Au	IIg	11	10	DI	10	Πι	IX11
Fr	Ra	Ac															1
11	па	AC															
]
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Th	Do	T	Nn	D11	Δm	Cm	Bŀ	Cf	Fo	Fm	Md	No	Ir	
			111	ra	U	түр	ru	AIII	CIII	DK	CI	ĽS	1,111	wiu	INU	LI	
																	1

Image by MIT OpenCourseWare.

cost / performance

better than lithium-ion, cheaper than lead acid

opportunities for basic science

database is spotty: alloys lacking widespread commercial use

theory not ready to predict properties of liquid metals and alloys properties must be measured

 emf data in molten salts require verification with candidate metal couples
 "Доверяй, но проверяй" …trust, but verify…

activity measurements of Ca - Bi alloys

scaling laws: towards self-heating cell

20 Ahr cell

Results: Addition of insulation

$$Q_{source} = 7.2 \left[\text{W/cm}^3 \right]$$

next steps

cycle performance data analysis of failure modes self heating cell cell optimization ⇒ cost model

tethered in the wireless age 🖙 portable power

enabling radical innovation:

biomedical devices

transportation

Images of an implantable defibrillator and an electric car have been removed due to copyright restrictions.

10.391J Sustainable Energy

November 23, 2010

motivation

Imagine driving this:

Sadoway

10.391J Sustainable Energy

November 23, 2010
motivation (continued)

without the need for this:

Image by Mirjana Chamberlain-Vucic on Flickr.

10.391J Sustainable Energy

relevant enabling technology

Image by MIT OpenCourseWare. Adapted from Donald Sadoway.

10.391J Sustainable Energy

The message

There's plenty of room at the top: we are far from hitting the ceiling set by nature.

The road to success is paved with advanced materials.

10.391J Sustainable Energy

A bit of automotive history

1888 Frederick Kimball, Boston: first electric passenger car why now the renewed interest? answer: CARB to improve urban air quality CARB set new standards, including... **CARB** Implementation Dates for ZEVs 1998 2% new car sales[⊕] 2001 5% new car salesth 2003 10% new car sales⁺ 1991 NESCAUM formed 1992 MA adopts CA standards

Sadoway

Problems with EV propulsion

- range: function of energy density of the battery.
 Compare gasoline @ 13,000 (theo.) / 2600 Wh/kg with the lead-acid battery @ 175 (theo.) / 35 Wh/kg
- 2. time to refuel: charge 40 kWh in 5 minutes?
 ⇒ 220 V × 2200 A!!!

When you pump gasoline @ 20 ℓ /min, your energy transfer rate is about 10 MW! (Hint: energy density of gasoline is 10 kWhth/ ℓ .)

Problems with EV propulsion

3. cost:

(1) light but safe means higher materials costs, *e.g.*, less steel, more aluminum; and higher processing costs, *e.g.*, fewer castings, more forgings... (2) to reduce load on the **battery** requires high efficiency appliances \Rightarrow costly (3) low cycle life — **batteries** priced @ \$4,000 to \$8,000 lasting about 2 years

Battery basics

what is a battery?

a device for exploiting chemical energy to perform electrical work *i.e.*, an electrochemical power source

the design paradigm?

choose a chemical reaction with a large driving force (Δ G) and fast kinetics to cause the reaction to occur by steps involving electron transfer

A simple chemical reaction

Sadoway

10.391J Sustainable Energy

Same reaction, but not so simple

Pb +
$$SO_4^{2-}(aq) \Rightarrow$$
 PbSO₄ + 2 e-
in Water
PbO₂ + 4 H⁺(aq) + $SO_4^{2-}(aq)$ + 2 e-
 \Rightarrow 2 H₂O + PbSO₄
reactants physically separated
 \mathcal{H}_2SO_4
 \mathcal{H}_2SO_4

102

Electrons in motion

$$Pb + SO_4^{2-}(aq) \Rightarrow PbSO_4 + 2e^{-}$$

 $PbO_2 + 4 H_{(aq)}^+ + SO_4^{2-}_{(aq)}^- + 2 e^ \Rightarrow 2 H_2O + PbSO_4$

Electrons in motion

$$PbSO_4 + 2e^- \Rightarrow Pb + SO_4^{2-}(aq)$$

$2 H_2 O + PbSO_4 \Rightarrow$

The lead-acid battery

Sadoway

10.391J Sustainable Energy

Lead-acid battery on discharge

Image by MIT OpenCourseWare. Adapted from Donald Sadoway.

The nickel metal-hydride battery

cathode: $NiOOH_{(aq)} + 2 H_2O + e^{-1}$ \Rightarrow Ni(OH)_{2(aq)} + OH⁻_(aq) anode: $MH + OH_{(aq)} \Leftrightarrow M + H_2O + e^{-1}$ electrolyte: 30% KOH_(aq) (alkaline)

Sadoway

The nickel metal-hydride battery

cathode: $NiOOH_{(aq)} + 2 H_2O + e^{-1}$ \Rightarrow Ni(OH)_{2(aq)} + OH⁻_(aq) Ni³⁺ + e⁻ ⇒ Ni²⁺ anode: $MH + OH_{(aq)} \Rightarrow M + H_2O + e^ H \iff H^+ + e^-$

The lithium ion battery

anode (-)

$Li_{in carbon} \rightarrow Li^+ + e^-$

cathode (+)

$Li^{+} + e^{-} + Li_{x}CoO_{2} \rightarrow Li_{1+x}CoO_{2}$ $Li^{+} + e^{-} + Co^{4+} \rightarrow Li^{+} + Co^{3+}$

electrolyte: 1 M LiPF₆ in

1:1 ethylene carbonate – propylene carbonate

10.391J Sustainable Energy

Battery Performance Metrics

Ragone plot

Reprinted by permission from Macmillan Publishers Ltd: Nature.

Sadoway

Source: Tarascon, J. M., and M. Armand. "Issues and Challenges Facing Rechargeable Lithium Batteries." Nature 414 (2001). © 2001.

10.391J Sustainable Energy

Warhol, "Marilyn Diptych" (1962) Tate Gallery

Please see Andy Warhol, "Marilyn Diptych," 1962.

Sadoway, "GM EV1 Diptych" (2005) Private Collection

1 Wh/kg storage capacity 1 mile driving range

Sadoway

10.391J Sustainable Energy

USABC Long-term Performance Goals

operating temp. specific energy energy density specific power power density cycle life service life ultimate price

-40 to 85°C 200 Wh/kg @ C/3 300 Wh/L @ C/3 400 W/kg 600 W/L 1000 cycles @ 80% DOD 10 years ~ \$100/kWh for 40 kWh packs

new thresholds in performance

Today LiCoO₂, LiNiO₂, LiFe(PO₄) all use only one electron per metal (e.g. Co⁴⁺/Co³⁺)

theoretical capacity limited << 300 mAh/g
</p>

The Futurecompounds where metal cyclesover multiple redox steps

10.391J Sustainable Energy

breaking the one-electron barrier

In the presence of Mn, $\begin{array}{r} Li^+ + 2e^- + Li_X NiO_2 \rightarrow Li_{1+X} NiO_2 \\ Li^+ + 2e^- + Ni^{4+} \rightarrow Li^+ + Ni^{2+} \end{array}$

theoretical capacity
 600 mAh/g !
 540 Wh/kg !
 c.f. 150 Wh/kg in Li ion two-electron change around Ni upon Li intercalation

Courtesy of Gerbrand Ceder. Used with permission

10.391J Sustainable Energy

breaking the one-electron barrier

Your wild est dream $Li^+ + 3e^- + Li_xCrO_3 \rightarrow Li_{1+x}CrO_3$ $Li^+ + 3e^- + Cr^{6+} \rightarrow Li^+ + Cr^{3+}$ reference theoretical capacity ≈ 1000 mAh/g ! ≈ 700 Wh/kg ! ∞ 700 mi

10.391J Sustainable Energy

breaking the one-electron barrier

Your wildest dream $Li^+ + 3e^- + Li_XMnO_4 \rightarrow Li_{1+X}MnO_4$ $Li^+ + 3e^- + Mn^{7+} \rightarrow Li^+ + Mn^{4+}$ theoretical capacity ≈ 1000 mAh/g ! ≈ 700 Wh/kg ! ∞ 700 mi

10.391J Sustainable Energy

supervalent battery: beyond lithium

- \Rightarrow energy density \propto (ion charge)²
- => can Li become a strategic resource?

limitations of lithium

Please see: Abuelsamid, Sam. "Forget Peak Oil. Are We Facing Peak Lithium?" *AutoblogGreen*, January 30, 2007. LaMonica, Martin. "Electric-Car Race Could Strain Lithium Battery Supply." *CNET Green Tech*, October 31, 2008. Kempf, Herve. "Limited Lithium Supplies Could Restrict Electric Car Growth." *EV World*, October 9, 2008. Kahya, Damian. "Bolivia Holds Key to Electric Car Future." *BBC News*, November 9, 2008. "The Trouble with Lithium 2: Under the Microscope." Meridian International Research, May 29, 2008.

supervalent battery: beyond lithium

- \Rightarrow energy density \propto (ion charge)²
- can Li become a strategic resource?
- ➡ with MITEI support we have begun searching for redox couples based upon ions of valence ≥ 3, e.g., Al³⁺

supervalent battery: beyond lithium

- \Rightarrow energy density \propto (ion charge)²
- => can Li become a strategic resource?
- with MITEI support we have begun searching for redox couples based upon ions of valence ≥ 3, e.g., Al³⁺
 mot just intercalation reactions but also metatheticals

The hydrogen fuel cell

anode:

cathode:

 1_{2}^{1} $O_{2} + 2 H^{+} + 2 e^{-} \Rightarrow H_{2}O$

electrolyte:

proton (H⁺) conductor,

i.e., proton exchange membrane (PEM)

both electrode reactions occur on substrates made of platinum-group metals

The hydrogen fuel cell

electrolyte:

proton (H⁺) conductor,

i.e., proton exchange membrane (PEM)

both electrode reactions occur on substrates made of platinum-group metals

The hydrogen fuel cell

technical issues:

- ⇒ hydrogen on board? pure H₂? LaNi₅?
- generation of hydrogen?

water electrolysis?

cracking of natural gas or even gasoline?

=> electrode stability:

corrosion, contamination, mechanical disturbance, conversion efficiency

electrolyte stability: breakdown, impurities

potential showstoppers

Cost: noble-metal electrodes

Cost: no infrastructure for H₂ delivery

Effectiveness: will this truly reduce CO₂ emissions?

Sadoway

...in summary

- One size does not fit all: different applications call for different power sources.
- Batteries have been around for a long time: user community justifiably frustrated at present state of battery development.
- Big changes are under way:
 ingress of materials scientists invigorating the field;
 computational materials science accelerating the rate
 of discovery *if we make the investment*.

...in summary

Development of human resources:

electrochemical science & engineering need sustained support to attract and retain the best and brightest

Bibliography

- "Batteries and Electric Cells, Secondary," *Kirk-Othmer Encyclopedia of Chemical Technology*, 4th edition, Vol. 3, Wiley Interscience, New York, 1992, pp. 569-670.
- "Electrochemical Power for Transportation,"
 E.J. Cairns and E.T. Hietbrink, *Comprehensive Treatise of Electrochemistry*, Vol. 3, Plenum, New York, 1981, pp. 421-504.
- Handbook of Batteries, 3rd ed.,
 David Linden and Thomas B. Reddy, editors,
 McGraw-Hill, New York, 2002.

Sadoway

Bibliography

- 4. Michael Schnayerson, *The Car That Could*, Random House, New York, 1996.
- R. de Neufville, S.R. Connors, F.R. Field, III,
 D. Marks, D.R. Sadoway, and R.D. Tabors,
 "The Electric Car Unplugged,"
 Technology Review, **99**, 30-36 (1996).
- Donald R. Sadoway and Anne M. Mayes,
 "Portable Power: Advanced Rechargeable Lithium Batteries," MRS Bulletin, August, 2002.

Volta Museum Como, Italy

MIT OpenCourseWare http://ocw.mit.edu

22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.