22.101 Applied Nuclear Physics (Fall 2006)

QUIZ No. 2 (closed book)

November 15, 2006

Problem 1 (15%)

Consider a two-particle system comprising a neutron scattering from a proton.

- a) Write the Hamiltonian for this system with the addition of a spin-spin coupling term representing the interaction energy between the spin of the proton S_p and the spin of the neutron S_n . (*Hint: This should be very similar to the spin-orbit coupling we described for a nucleus*).
- b) Define a new operator S^2_{total} representing the total spin angular momentum of this system and use S^2_{total} to express the spin-spin coupling component of the Hamiltonian in terms of S^2_{total} , S^2_{p} and S^2_{n} .
- c) For the Hamiltonian in part a) we could have expressed our eigenfunctions as $ls_p,s_n,m_p,m_n>$. Based on your result in part b), choose a new set of eigenfunctions that depends on the total spin angular momentum of the system.
- d) Describe the implied constraints on the eigenvalues of the diagonalized operators for this new set of eigenfunctions.

Problem 2 (15%)

- a) Sketch a nuclear potential well emphasizing the differences in the potential seen by neutrons and protons. Include a rough schematic of the energy levels for both types of particle.
- b) Use this sketch to derive the asymmetry term in the empirical mass formula.

Problem 3 (15%)

Imagine a fictional universe where all nuclides follow a B/A curve of the form

$$B/A = E_B \qquad A_1 \le A \le A_2$$

= 0.1E_B otherwise

with $A_2 > A_1$.

- a) Draw a graph describing B/A vs. A and comment on the stability of the nuclides in the various regions of the graph.
- b) Is/Are there region(s) of the graph where fission is favorable for isotopes in that/those region(s)? Explain.
- c) Is/Are there region(s) of the graph where fusion is favorable for isotopes in that/those region(s)? Explain.

Problem 4 (15%)

Consider a radioisotope that decays through β^+ decay and electron capture with decay constants λ_{β} and λ_{EC} , respectively. An amount of this isotope is present at t=0.

- a) What fraction of the nuclei present at t=0 will decay between arbitrary t_1 and t_2 ?
- b) What fraction of the nuclei that decayed in part a will have done so via β^+ decay?

- c) What fraction of the total nuclei present at t=0 will decay through β^+ decay between arbitrary t₁ and t₂? *Note: This is not the same as part b.*
- d) Is your result in part c) reasonable? Interpret your result physically.

Problem 5 (20%)

Discuss the stopping power of electrons in a high Z absorber.

- i) Sketch the stopping power of electrons in a high Z absorber such as lead over an energy range from zero to 10 times the rest mass energy.
- ii) Explain the physical origin of all characteristic features.
- iii) For portions of the curve where possible, give simple formulas describing the shape of the curve.

Problem 6 (20%)

The solution to the Q-equation is given as $\sqrt{E_3} = s \pm \sqrt{s^2 + t}$, where

$$s = \frac{\sqrt{M_1 M_3 E_1 \cos \theta}}{M_3 + M_4}$$
 and $t = \frac{M_4 Q + (M_4 - M_1) E_1}{M_3 + M_4}$

- a) For an endothermic reaction with $M_4 > M_1$, what is the constraint on E_3 for the described reaction to occur?
- b) From this constraint, what can you conclude about s and t?