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Nuclear Shell Model 
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There are similarities between the electronic structure of atoms and nuclear 

structure. Atomic electrons are arranged in orbits (energy states) subject to the laws of 

quantum mechanics.  The distribution of electrons in these states follows the Pauli 

exclusion principle.  Atomic electrons can be excited up to normally unoccupied states, 

or they can be removed completely from the atom.  From such phenomena one can 

deduce the structure of atoms.  In nuclei there are two groups of like particles, protons 

and neutrons. Each group is separately distributed over certain energy states subject also 

to the Pauli exclusion principle.  Nuclei have excited states, and nucleons can be added to 

or removed from a nucleus. 

Electrons and nucleons have intrinsic angular momenta called intrinsic spins.  The 

total angular momentum of a system of interacting particles reflects the details of the 

forces between particles. For example, from the coupling of electron angular momentum 

in atoms we infer an interaction between the spin and the orbital motion of an electron in 

the field of the nucleus (the spin-orbit coupling).  In nuclei there is also a coupling 

between the orbital motion of a nucleon and its intrinsic spin (but of different origin).  In 

addition, nuclear forces between two nucleons depend strongly on the relative orientation 

of their spins. 

The structure of nuclei is more complex than that of atoms.  In an atom the 

nucleus provides a common center of attraction for all the electrons and inter-electronic 

forces generally play a small role.  The predominant force (Coulomb) is well understood.  
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Nuclei, on the other hand, have no center of attraction; the nucleons are held together by 

their mutual interactions which are much more complicated than Coulomb interactions. 

All atomic electrons are alike, whereas there are two kinds of nucleons.  This 

allows a richer variety of structures.  Notice that there are ~ 100 types of atoms, but more 

than 1000 different nuclides. Neither atomic nor nuclear structures can be understood 

without quantum mechanics.   

Experimental Basis 

There exists considerable experimental evidence pointing to the shell-like 

structure of nuclei, each nucleus being an assembly of nucleons.  Each shell can be filled 

with a given number of nucleons of each kind.  These numbers are called magic numbers; 

they are 2, 8, 20, 28, 50, 82, and 126. (For the as yet undiscovered superheavy nuclei the 

magic numbers are expected to be N = 184, 196, (272), 318, and Z = 114, (126), 164 

[Marmier and Sheldon, p. 1262].)  Nuclei with magic number of neutrons or protons, or 

both, are found to be particularly stable, as can be seen from the following data. 

(i)	 Fig. 9.1 shows the abundance of stable isotones (same N) is particularly large 

for nuclei with magic neutron numbers. 

Fig. 9.1.  Histogram of stable isotones showing nuclides with neutron numbers 20, 28, 

50, and 82 are more abundant by 5 to 7 times than those with non-magic neutron numbers 

[from Meyerhof]. 
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(ii) Fig. 9.2 shows that the neutron separation energy Sn is particularly low for 

nuclei with one more neutron than the magic numbers, where 

Sn = [M (A −1, Z ) + M n − M (A, Z )]c 2 (9.1) 

This means that nuclei with magic neutron numbers are more tightly bound. 

Fig. 9.2.  Variation of neutron separation energy with neutron number of the final nucleus 

M(A,Z) [from Meyerhof]. 
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(iii)	 The first excited states of even-even nuclei have higher than usual energies at 

the magic numbers, indicating that the magic nuclei are more tightly bound 

(see Fig. 9.3). 

Fig. 9.3.  First excited state energies of even-even nuclei [from Meyerhof]. 
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(iv)	 The neutron capture cross sections for magic nuclei are small, indicating a 

wider spacing of the energy levels just beyond a closed shell, as shown in Fig. 

9.4. 

Fig. 9.4.  Cross sections for capture at 1 Mev [from Meyerhof]. 

Simple Shell Model 

The basic assumption of the shell model is that the effects of internuclear 

interactions can be represented by a single-particle potential.  One might think that with 

very high density and strong forces, the nucleons would be colliding all the time and 

therefore cannot maintain a single-particle orbit.  But, because of Pauli exclusion the 

nucleons are restricted to only a limited number of allowed orbits.  A typical shell-model 

potential is 

V
V (r) = − o	     (9.1)  

1+ exp[(r − R) / a] 

where typical values for the parameters are Vo ~ 57 Mev, R ~ 1.25A1/3 F, a ~ 0.65 F. In 

addition one can consider corrections to the well depth arising from (i) symmetry energy 

from an unequal number of neutrons and protons, with a neutron being able to interact 

with a proton in more ways than n-n or p-p (therefore n-p force is stronger than n-n and 

p-p), and (ii) Coulomb repulsion.  For a given spherically symmetric potential V(r), one 

5 

Figure by MIT OCW. Adapted from Meyerhof.
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can examine the bound-state energy levels that can be calculated from radial wave 

equation for a particular orbital angular momentum l , 

− 
h d 2u 

2 
l + ⎢

⎡l(l +1)
2 

h 2 

+ V (r)⎥
⎤ 
ul (r) = Eul (r) (9.2)

2m dr ⎣ 2mr ⎦ 

Fig. 9.5 shows the energy levels of the nucleons for an infinite spherical well and a 

harmonic oscillator potential, V (r) = mω 2 r 2 / 2 . While no simple formulas can be given 

for the former, for the latter one has the expression 

Eν = hω(ν + 3/ 2) = hω(nx + ny + nz + 3/ 2) (9.3) 

where ν  = 0, 1, 2, …, and nx, ny, nz = 0, 1, 2, … are quantum numbers.  One should 

notice the degeneracy in the oscillator energy levels.  The quantum number ν  can be 

divided into radial quantum number n (1, 2, …) and orbital quantum numbers l  (0, 1, 

…) as shown in Fig. 9.5.  One can see from these results that a central force potential is 

able to account for the first three magic numbers, 2, 8, 20, but not the remaining four, 28, 

50, 82, 126. This situation does not change when more rounded potential forms are used.  

The implication is that something very fundamental about the single-particle interaction 

picture is missing in the description. 
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Fig. 9.5.  Energy levels of nucleons in (a) infinite spherical well (range R = 8F) and (b) a 

parabolic potential well. In the spectroscopic notation (n, l ), n refers to the number of 

times the orbital angular momentum state l  has appeared. Also shown at certain levels 

are the cumulative number of nucleons that can be put into all the levels up to the 

indicated level [from Meyerhof].  

Shell Model with Spin-Orbit Coupling 

It remains for M. G. Mayer and independently Haxel, Jensen, and Suess to show 

(1949) that an essential missing piece is an attractive interaction between the orbital 

angular momentum and the intrinsic spin angular momentum of the nucleon.  To take 

into account this interaction we add a term to the Hamiltonian H, 

2

H = 
p 

+ V (r) + V (r)s ⋅ L (9.4)
2m so 

where Vso is another central potential (known to be attractive).  This modification means 

that the interaction is no longer spherically symmetric; the Hamiltonian now depends on 

the relative orientation of the spin and orbital angular momenta.  It is beyond the scope of 

this class to go into the bound-state calculations for this Hamiltonian.  In order to 

understand the meaning of the results of such calculations (eigenvalues and 

eigenfunctions) we need to digress somewhat to discuss the addition of two angular 

momentum operators. 

The presence of the spin-orbit coupling term in (9.4) means that we will have a 

different set of eigenfunctions and eigenvalues for the new description.  What are these 

new quantities relative to the eigenfunctions and eigenvalues we had for the problem 

without the spin-orbit coupling interaction?  We first observe that in labeling the energy 

levels in Fig. 9.5 we had already taken into account the fact that the nucleon has an 

orbital angular momentum (it is in a state with a specified l ), and that it has an intrinsic 

spin of ½ (in unit of h ). For this reason the number of nucleons that we can put into each 

level has been counted correctly. For example, in the 1s ground state one can put two 

nucleons, for zero orbital angular momentum and two spin orientations (up and down).  
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The student can verify that for a state of given l , the number of nucleons that can go into 

that state is 2(2 l +1). This comes about because the eigenfunctions we are using to 

describe the system is a representation that diagonalizes the square of the orbital angular 

momentum operator L2, its z-component, Lz, the square of the intrinsic spin angular 

momentum operator S2, and its z-component Sz. Let us use the following notation to 

label these eigenfunctions (or representation), 

l, ml , s, ms ≡ Yl 
ml χ s

ms (9.5) 

lwhere Yl
m  is the spherical harmonic we first encountered in Lec4, and we know it is the 

eigenfunction of the square of the orbital angular momentum operator L2 (it is also the 
seigenfunction of Lz). The function χ s

m  is the spin eigenfunction with the expected 

properties, 

m mS 2 χ s
s = s(s +1)h 2 χ s

s , s=1/2  (9.6) 

S z χ s
ms = ms hχ s

ms , − s ≤ ms ≤ s (9.7) 

msThe properties of χ s with respect to operations by S2 and Sz completely mirror the 

lproperties of Yl
m  with respect to L2 and Lz. Going back to our representation (9.5) we 

see that the eigenfunction is a “ket” with indices which are the good quantum numbers 

for the problem, namely, the orbital angular momentum and its projection (sometimes 

called the magnetic quantum number m, but here we use a subscript to denote that it goes 

with the orbital angular momentum), the spin (which has the fixed value of ½) and its 

projection (which can be +1/2 or -1/2). 

The representation given in (9.5) is no longer a good representation when the 

spin-orbit coupling term is added to the Hamiltonian. It turns out that the good 

representation is just a linear combination of the old representation.  It is sufficient for 

our purpose to just know this, without going into the details of how to construct the linear 
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combination.  To understand the properties of the new representation we now discuss 

angular momentum addition. 

The two angular momenta we want to add are obviously the orbital angular 

momentum operator L and the intrinsic spin angular momentum operator S, since they 

are the only angular momentum operators in our problem.  Why do we want to add them? 

The reason lies in (9.4). Notice that if we define the total angular momentum as 

j = S + L     (9.8)  

we can then write 

S ⋅ L = ( j 2 − S 2 − L2 ) / 2 (9.9) 

so the problem of diagonalizing (9.4) is the same as diagonalizing  j2, S2, and L2. This is 

then the basis for choosing our new representation.  In analogy to (9.5) we will denote the 

new eigenfunctions by jm j ls , which has the properties 

j 2 jm j ls = j( j +1)h 2 jm j ls , l − s ≤ j ≤ l + s (9.10) 

jz jm j ls = m j h jm j ls , − j ≤ m j ≤ j (9.11) 

L2 jm j ls = l(l +1)h 2 jm j ls , l  = 0, 1, 2, … (9.12) 

S 2 jm j ls = s(s +1)h 2 jm j ls , s = ½ (9.13) 

In (9.10) we indicate the values that j can take for given l  and s (=1/2 in our discussion), 

the lower (upper) limit corresponds to when S and L are antiparallel (parallel) as shown 

in the sketch. 

9 



Returning now to the energy levels of the nucleons in the shell model with spin-orbit 

coupling we can understand the conventional spectroscopic notation where the value of j 

is shown as a subscript. 

This is then the notation in which the shell-model energy levels are displayed in Fig. 9.6. 

Fig. 9.6.  Energy levels of nucleons in a smoothly varying potential well with a strong 

spin-orbit coupling term [from Meyerhof]. 
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For a given ( n,l, j ) level, the nucleon occupation number is 2j+1.  It would appear that 

having 2j+1 identical nucleons occupying the same level would violate the Pauli 

exclusion principle.  But this is not the case since each nucleon would have a distinct 

value of mj (this is why there are 2j+1 values of mj for a given j). 

We see in Fig. 9.6 the shell model with spin-orbit coupling gives a set of energy 

levels having breaks at the seven magic numbers.  This is considered a major triumph of 

the model, for which Mayer and Jensen were awarded the Noble prize in physics.  For 

our purpose we will use the results of the shell model to predict the ground-state spin and 

parity of nuclei.  Before going into this discussion we leave the student with the 

following comments. 

1.	 The shell model is most useful when applied to closed-shell or near closed-shell 

nuclei. 

2.	 Away from closed-shell nuclei collective models taking into account the rotation 

and vibration of the nucleus are more appropriate. 

3.	 Simple versions of the shell model do not take into account pairing forces, the 

effects of which are to make two like-nucleons combine to give zero orbital 

angula momentum. 

4.	 Shell model does not treat distortion effects (deformed nuclei) due to the 

attraction between one or more outer nucleons and the closed-shell core.  When 

the nuclear core is not spherical, it can exhibit “rotational” spectrum. 

Prediction of Ground-State Spin and Parity 

There are three general rules for using the shell model to predict the total angular 

momentum (spin) and parity of a nucleus in the ground state.  These do not always work, 

especially away from the major shell breaks. 

1.	 Angular momentum of odd-A nuclei is determined by the angular momentum of 

the last nucleon in the species (neutron or proton) that is odd. 

2.	 Even-even nuclei have zero ground-state spin, because the net angular momentum 

associated with even N and even Z is zero, and even parity. 

3.	 In odd-odd nuclei the last neutron couples to the last proton with their intrinsic 

spins in parallel orientation. 
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To illustrate how these rules work, we consider an example for each case.  Consider 

the odd-A nuclide Be9 which has 4 protons and 5 neutrons.  With the last nucleon being 

the fifth neutron, we see in Fig. 9.6 that this nucleon goes into the state 1p3 / 2 ( l =1, 

j=3/2). Thus we would predict the spin and parity of this nuclide to be 3/2-. For an even-

even nuclide we can take A36, with 18 protons and neutrons, or Ca40, with 20 protons and 

neutrons. For both cases we would predict spin and parity of 0+. For an odd-odd nuclide 

we take Cl38, which has 17 protons and 21 neutrons.  In Fig. 9.6 we see that the 17th 

proton goes into the state 1d3 / 2 ( l =2, j=3/2), while the 21st neutron goes into the state 

1 f7 / 2 ( l =3, j=7/2).  From the l  and j values we know that for the last proton the orbital 

and spin angular momenta are pointing in opposite direction (because j is equal to l -1/2).  

For the last neutron the two momenta are pointing in the same direction (j = l  +1/2). 

Now the rule tells us that the two spin momenta are parallel, therefore the orbital angular 

momentum of the odd proton is pointing in the opposite direction from the orbital angular 

momentum of the odd neutron, with the latter in the same direction as the two spins.  

Adding up the four angular momenta, we have +3+1/2+1/2-2 = 2.  Thus the total angular 

momentum (nuclear spin) is 2.  What about the parity?  The parity of the nuclide is the 

product of the two parities, one for the last proton and the other for the last neutron.  

Recall that the parity of a state is determined by the orbital angular momentum quantum 

number l , π = (−1)l . So with the proton in a state with l  = 2, its parity is even, while 

the neutron in a state with l  = 3 has odd parity. The parity of the nucleus is therefore 

odd. Our prediction for Cl38 is then 2-.  The student can verify, using for example the 

Nuclide Chart, the foregoing predictions are in agreement with experiment. 

Potential Wells for Neutrons and Protons 

We summarize the qualitative features of the potential wells for neutrons and 

protons. If we exclude the Coulomb interaction for the moment, then the well for a 

proton is known to be deeper than that for a neutron. The reason is that in a given nucleus 

usually there are more neutrons than protons, especially for the heavy nuclei, and the n-p 

interactions can occur in more ways than either the n-n or p-p interactions on account of 
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the Pauli exclusion principle. The difference in well depth ∆Vs is called the symmetry 

energy; it is approximately given by 

∆Vs = ±27 (N − Z ) Mev (9.14)
A 

where the (+) and (-) signs are for protons and neutrons respectively.  If we now consider 

the Coulomb repulsion between protons, its effect is to raise the potential for a proton.  In 

other words, the Coulomb effect is a positive contribution to the nuclear potential which 

is larger at the center than at the surface. 

Combining the symmetry and the Coulomb effects we have a sketch of the 

potential for a neutron and a proton as indicated in Fig. 9.7.  One can also estimate the 

Fig. 9.7.  Schematic showing the effects of symmetry and Coulomb interactions on the 

potential for a neutron and a proton [from Marmier and Sheldon]. 

well depth in each case using the Fermi Gas model.  One assumes the nucleons of a fixed 

kind behave like a fully degenerate gas of fermions (degeneracy here means that the 

states are filled continuously starting from the lowest energy state and there are no 

unoccupied states below the occupied ones), so that the number of states occupied is 

equal to the number of nucleons in the particular nucleus.  This calculation is carried out 

separately for neutrons and protons.  The highest energy state that is occupied is called 

the Fermi level, and the magnitude of the difference between this state and the ground 
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state is called the Fermi energy EF. It turns out that EF is proportional to n2/3, where n is 

the number of nucleons of a given kind, therefore EF (neutron) > EF (proton).  The sum of 

EF and the separation energy of the last nucleon provides an estimate of the well depth.  

(The separation energy for a neutron or proton is about 8 Mev for many nuclei.)  Based 

on these considerations one obtains the results shown in Fig. 9.8.  

Fig. 9.8.  Nuclear potential wells for neutrons and protons according to the Fermi-gas 

model, assuming the mean binding energy per nucleon to be 8 Mev, the mean relative 

nucleon admixture to be N/A ~ 1/1.8m Z/A ~ 1/2.2, and a range of 1.4 F (a) and 1.1 F (b) 

[from Marmier and Sheldon]. 

We have so far considered only a spherically symmetric nuclear potential well.  

We know there is in addition a centrifugal contribution of the form l(l +1)h 2 / 2mr 2 and a 

spin-orbit contribution.  As a result of the former the well becomes narrower and 

shallower for the higher orbital angular momentum states.  Since the spin-orbit coupling 

is attractive, its effect depends on whether S is parallel or anti-parallel to L. The effects 

are illustrated in Figs. 9.9 and 9.10.  Notice that for l  = 0 both are absent. 

We conclude this chapter with the remark that in addition to the bound states in 

the nuclear potential well there exist also virtual states (levels) which are positive energy 

states in which the wave function is large within the potential well.  This can happen if 

the deBroglie wavelength is such that approximately standing waves are formed within 

the well. (Correspondingly, the reflection coefficient at the edge of the potential is large.)  
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A virtual level is therefore not a bound state; on the other hand, there is a non-negligible 

probability that inside the nucleus a nucleon can be found in such a state.  See Fig. 9.11. 

Fig. 9.9.  Energy levels and wave functions for a square well for l  = 0, 1, 2, and 3 [from 

Cohen]. 
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Fig. 9.10. The effect of spin-orbit interaction on the shell-model potential [from Cohen]. 
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Fig. 9.11.  Schematic representation of nuclear levels [from Meyerhof]. 
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