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22.101 Applied Nuclear Physics (Fall 2006) 

Lecture 11 (10/23/06) 

Nuclear Binding Energy and Stability 

References: 

W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967), Chap.2. 

The stability of nuclei is of great interest because unstable nuclei undergo 

transitions that result in the emission of particles and/or electromagnetic radiation 

(gammas).  If the transition is spontaneous, it is called a radioactive decay.  If the 

transition is induced by the bombardment of particles or radiation, then it is called a 

nuclear reaction. 

The mass of a nucleus is the decisive factor governing its stability.  Knowing the 

mass of a particular nucleus and those of the neighboring nuclei, one can tell whether or 

not the nucleus is stable.  Yet the relation between mass and stability is complicated.  

Increasing the mass of a stable nucleus by adding a nucleon can make the resulting 

nucleus unstable, but this is not always true.  Starting with the simplest nucleus, the 

proton, we can add one neutron after another.  This would generate the series, 

β −


H + n → H 2 (stable) + n → H 3 (unstable) → He3 (stable) + n → He4 (stable)


Because He4 is a double-magic nucleus, it is particularly stable.  If we continue to add a 

nucleon we find the resulting nucleus is unstable, 

He4 + n → He5 → He4 , with t1/2 ~ 3 x 10-21 s 

He4 + H → Li 5 → He4 , with t1/2 ~ 10-22 s 

One may ask:  With He4 so stable how is it possible to build up the heavier elements 

starting with neutrons and protons? (This question arises in the study of the origin of 
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elements.  See, for example, the Nobel lecture of A. Penzias in Reviews of Modern 

Physics, 51, 425 (1979).) The answer is that the following reactions can occur 

He4 + He4 → Be8 

He4 + Be8 → C12 (stable) 

Although Be8 is unstable, its lifetime of ~ 3 x 10-16 s is apparently long enough to enable 

the next reaction to proceed. Once C12 is formed, it can react with another He4 to give 

O16, and in this way the heavy elements can be formed. 

Instead of the mass of a nucleus one can use the binding energy to express the 

same information.  The binding energy concept is useful for discussing the calculation of 

nuclear masses and of energy released or absorbed in nuclear reactions. 

Binding Energy and Separation Energy 

We define the binding energy of a nucleus with mass M(A,Z) as 

B(A, Z ) ≡ [ZM H + NM n − M (A, Z )]c 2 (10.1) 

where MH is the hydrogen mass and M(A,Z) is the atomic mass.  Strictly speaking one 

should subtract out the binding energy of the electrons; however, the error in not doing so 

is quite small, so we will just ignore it. According to (10.1) the nuclear binding energy 

B(A,Z) is the difference between the mass of the constituent nucleons, when they are far 

separated from each other, and the mass of the nucleus, when they are brought together to 

form the nucleus.  Therefore, one can interpret B(A,Z) as the work required to separate 

the nucleus into the individual nucleons (separated far from each other), or equivalently, 

as the energy released during the assembly of the nucleus from the constituents. 

Taking the actual data on nuclear mass for various A and Z, one can calculate 

B(A,Z) and plot the results in the form shown in Fig. 10.1. 
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Fig. 10.1. Variation of average binding energy per nucleon with mass number for 

naturally occurring nuclides (and Be8).  Note scale change at A = 30. [from Meyerhof] 

The most striking feature of the B/A curve is the approximate constancy at ~ 8 

Mev per nucleon, except for the very light nuclei.  It is instructive to see what this 

behavior implies. If the binding energy of a pair of nucleons is a constant, say C, then for 

a nucleus with A nucleons, in which there are A(A-1)/2 distinct pairs of nucleons, the 

B/A would be ~ C(A-1)/2. Since this is not what one sees in Fig. 10.1, one can surmise 

that a given nucleon is not bound equally to all the other nucleons; in other words, 

nuclear forces, being short-ranged, extend over only a few neighbors.  The constancy of 

B/A implies a saturation effect in nuclear forces, the interaction energy of a nucleon does 

not increase any further once it has acquired a certain number of neighbors.  This number 

seems to be about 4 or 5. 

One can understand the initial rapid increase of B/A for the very light nuclei as 

the result of the competition between volume effects, which make B increase with A like 

A, and surface effects, which make B decrease (in the sense of a correction) with A like 

A2/3. The latter should be less important as A becomes large, hence B/A increases (see 

the discussion of the semi-empiricial mass formula in the next chapter).  At the other end 

of the curve, the gradual decrease of B/A for A > 100 can be understood as the effect of 
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Figure by MIT OCW. Adapted from Meyerhof.



Coulomb repulsion which becomes more important as the number of protons in the 

nucleus increases. 

As a quick application of the B/A curve we make a rough estimate of the energies 

release in fission and fusion reactions. Suppose we have symmetric fission of a nucleus 

with A ~ 240 producing two fragments, each A/2.  The reaction gives a final state with 

B/A of about 8.5 Mev, which is about 1 Mev greater than the B/A of the initial state.  

Thus the energy released per fission reaction is about 240 Mev.  (A more accurate 

estimate gives 200 Mev.)  For fusion reaction we take H 2 + H 2 → He4 . The B/A values 

of H2 and He4 are 1.1 and 7.1 Mev/nucleon respectively.  The gain in B/A is 6 

Mev/nucleon, so the energy released per fusion event is ~ 24 Mev. 

Binding Energy in Nuclear Reactions 

The binding energy concept is also applicable to a binary reaction where the 

initial state consists of a particle i incident upon a target nucleus I and the final state 

consists of an outgoing particle f and a residual nucleus F, as indicated in the sketch, 

We write the reaction in the form 

i + I → f + F + Q (10.2) 

where Q is an energy called the ‘Q-value of the reaction’.  Corresponding to (10.2) we 

have the definition 

Q ≡ [(M i + M I ) − (M f + M F )]c
2 (10.3) 

where the masses are understood to be atomic masses.  Every nuclear reaction has a 

characteristic Q-value; the reaction is called exothermic (endothermic) for Q > 0 (<0) 
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where energy is given off (absorbed).  Thus an endothermic reaction cannot take place 

unless additional energy, called the threshold, is supplied.  Often the source of this energy 

is the kinetic energy of the incident particle.  One can also express Q in terms of the 

kinetic energies of the reactants and products of the reaction by invoking the conservation 

of total energy, which must hold for any reaction, 

Ti + M ic
2 + TI + M I c

2 → T f + M f c 2 +T F +M F c 2 (10.4) 

Combining this with (10.3) gives 

Q = Tf + TF − (Ti + TI ) (10.5) 

Usually TI is negligible compared to Ti because the target nucleus follows a Maxwellian 

distribution at the temperature of the target sample (typically room temperature), while 

for nuclear reactions the incident particle can have a kinetic energy in the Mev range.  

Since the rest masses can be expressed in terms of binding energies, another expression 

for Q is 

Q = B( f ) + B(F ) − B(i) − B(I ) (10.6) 

As an example, the nuclear medicine technique called boron neutron capture therapy 

(BNCT) is based on the reaction 

B10 + n→ Li 7 + He4 + Q (10.7)5 3 

In this case, Q = B(Li)+B(α )-B(B) = 39.245+28.296-64.750 = 2.791 Mev. The reaction 

is exothermic, therefore it can be induced by a thermal neturon.  In practice, the simplest 

way of calculating Q values is to use the rest masses of the reactants and products.  For 

many reactions of interest Q values are in the range 1 – 5 Mev.  An important exception 

is fission, where Q ~ 170 – 210 Mev depending on what one considers to be the fission 
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products. Notice that if one defines Q in terms of the kinetic energies, as in (10.5), it may 

appear that the value of Q would depend on whether one is in laboratory or center-of-

mass coordinate system.  This is illusory because the equivalent definition, (10.3), is 

clearly frame independent. 

Separation Energy 

Recall the definition of binding energy, (10.1), involves an initial state where all 

the nucleons are removed far from each other.  One can define another binding energy 

where the initial state is one where only one nucleon is separated off.  The energy 

required to separate particle a from a nucleus is called the separation energy Sa. This is 

also the energy released, or energy available for reaction, when particle a is captured.  

This concept is usually applied to a neutron, proton, deuteron, or α -particle. The energy 

balance in general is 

Sa = [M a (A' , Z ' ) + M (A − A' , Z − Z ' ) − M (A, Z )]c 2 (10.8) 

where particle a is treated as a ‘nucleus’ with atomic number Z’ and mass number A’.  

For a neutron, 

Sn = [M n + M (A −1, Z ) − M (A, Z )]c 2 

=  B(A,Z)  –  B  (A-1,  Z)     (10.9)  

Sn is sometimes called the binding energy of the last neutron. 

 Clearly Sn will vary from one nucleus to another.  In the range of A where B/A is 

roughly constant we can estimate from the B/A curve that Sn ~ Sp ~ 8 Mev. This is a 

rough figure, for the heavy nuclei Sn is more like 5 – 6 Mev.  It turns out that when a 

nucleus M(A-1,Z) absorbs a neutron, there is ~ 1 Mev (or more, can be up to 4 Mev) 

difference between the neutron absorbed being an even neutron or an odd neutron (see 

Fig. 10.2). This difference is the reason that U235 can undergo fission with thermal 

neutrons, whereas U238 can fission only with fast neutrons (E > 1 Mev).  
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Fig. 10.2.  Variation of the neutron separation energies of lead isotopes with neutron 

number of the absorbing nucleus.  [from Meyerhof] 

Generally speaking the following systematic behavior is observed in neutron and proton 

separation energies, 

Sn(even N) > Sn(odd N) for a given Z 

Sp(even Z) > Sp(odd Z) for a given N 

This effect is attributed to the pairing property of nuclear forces – the existence of extra 

binding between pair of identical nucleons in the same state which have total angular 

momenta pointing in opposite directions.  This is also the reason for the exceptional 

stability of the α -particle. Because of pairing the even-even (even Z, even N) nuclei are 

more stable than the even-odd and odd-even nuclei, which in turn are more stable then 

the odd-odd nuclei. 

Abundance Systemtics of Stable Nuclides 

One can construct a stability chart by plotting the neutron number N versus the 

atomic number Z of all the stable nuclides.  The results, shown in Fig. 10.3, show that N 

~ Z for low A, but N > Z at high A. 
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Fig. 10.3. Neutron and proton numbers of stable nuclides which are odd (left) and even 

isobars (right). Arrows indicate the magic numbers of 20, 28, 50, 82, and 126.  Also 

shown are odd-odd isobars with A = 2, 6, 10, and 14. [from Meyerhof] 

Again, one can readily understand that in heavy nuclei the Coulomb repulsion will favor 

a neutron-proton distribution with more neutrons than protons.  It is a little more involved 

to explain why there should be an equal distribution for the light nuclides (see the 

following discussion on the semi-empirical mass formula).  We will simply note that to 

have more neutrons than protons means that the nucleus has to be in a higher energy 

state, and is therefore less stable. This symmetry effect is most pronounced at low A and 

becomes less important at high A.  In connection with Fig. 10.3 we note: 

(i) In the case of odd A, only one stable isobar exists, except A = 113, 123. 

(ii) In the case of even A, only even-even nuclides exist, except A = 2, 6, 10, 

14. 

Still another way to summarize the trend of stable nuclides is shown in the following 

table [from Meyerhof] 8 
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