
_______________________________________________________________________ 

________________________________________________________________________ 

22.101 Applied Nuclear Physics (Fall 2006) 


Lecture 16 (11/8/06) 


Neutron Interactions: Q-Equation, Elastic Scattering 
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Since a neutron has no charge it can easily enter into a nucleus and cause a 

reaction. Neutrons interact primarily with the nucleus of an atom, except in the special 

case of magnetic scattering where the interaction involves the neutron spin and the 

magnetic moment of the atom. Because magnetic scattering is of no interest in this class, 

we can neglect the interaction between neutrons and electrons and think of atoms and 

nuclei interchangeably. Neutron reactions can take place at any energy, so one has to pay 

particular attention to the energy variation of the interaction cross section. In a nuclear 

reactor neutrons can have energies ranging from 10-3 ev (1 mev) to 107 ev (10 Mev). This 

means our study of neutron interactions, in principle, will have to cover an energy range 

of 10 ten orders of magnitude. In practice we will limit ourselves to two energy ranges, 

the slowing down region (ev to Kev) and the thermal region (around 0.025 ev). 

For a given energy region – thermal, epithermal, resonance, fast – not all the 

possible reactions are equally important. Which reaction is important depends on the 

target nucleus and the neutron energy. Generally speaking the important types of 

interactions, in the order of increasing complexity from the standpoint of theoretical 

understanding, are: 

(n,n) – elastic scattering. There are two processes, potential scattering which is 

neutron interaction at the surface of the nucleus (no penetration) as in a billiard 

ball-like collision, and resonance scattering which involves the formation and 

decay of a compound nucleus. 

(n,J ) -- radiative capture. 
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(n,n’) -- inelastic scattering. This reaction involves the excitation of nuclear 

levels.

 (n,p), (n, D ), … -- charged particle emission. 

(n,f) -- fission. 

If we were interested in fission reactors, the reactions in the order of importance 

would be fission, capture (in fuel and other reactor materials), scattering (elastic and 

inelastic), and fission product decay by E -emission. In this lecture we will mostly study 

elastic (or potential) scattering. The other reactions all involve compound nucleus 

formation, a process we will discuss briefly around the end of the semester. 

The Q-Equation 

Consider the reaction, sketched in Fig. 15.1, where an incoming particle, labeled 

1, collides with a target nucleus (2), resulting in the emission of an outgoing particle (3), 

with the residual nucleus (4) recoiling. For simplicity we assume the target nucleus to be 

Fig. 15.1.  A two-body collision between incident particle 1 and target particle 2, which 

is at rest, leading to the emission of particle 3 at an angle T  and a recoiling residual 

particle 4. 

at rest, E2 = 0. This is often a good approximation because for a target at room 

temperature E2 is 0.025 ev; except for incoming neutrons in the thermal energy region, E1 

typically will be much greater than E2. We will derive an equation relating the outgoing 

energy E3 to the outgoing angle T  using the conservation of total energy and linear 

momentum, and non-relativistic kinematics, 
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(E1 � M1c
2 ) � M 2c 2 (E3 � M 3c

2 ) � (E4 � M 4 c
2 ) (15.1) 

p p � p (15.2)
1 3 4 

Rewriting the momentum equation as 

p4
2 ( p � p )2 

1 3 

= p1
2 � p3

2 � 2 p1 p3 cosT 2M 4 E4 (15.3) 

and recalling 

Q (M1 � M 2 � M 3 � M 4 )c 2 

E3 � E4 � E1 (15.4) 

we obtain 

Q E3 ̈̈
§
1� 

M 3 ¸
· 
� E1 ̈̈

§
1� 

M 1 ¸
· 
� 

2 M 1M 3 E1 E3 cosT (15.5) ¸ ¸
© M 4 ¹ © M 4 ¹ M 4 

which is known as the Q-equation. Notice that the energies Ei and angle T  are in the 

laboratory coordinate system (LCS), while Q is independent of coordinate system (since 

Q can be expressed in terms of masses which of course do not depend on coordinate 

system). A typical situation is when the incident energy E1, the masses (and therefore Q-

value) are all known, and one is interested in solving (15.5) for E3 in terms of cosT , or 

vice versa. 

Eq. (15.5) is actually not an equation for determining the Q-value; this is already 

known because all four particles in the reaction and their rest masses are prescribed 
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beforehand. What then is the quantity that one can solve (15.5) to obtain? We should 

think of the Q-equation as a relation connecting the 12 degrees of freedom in any two-

body collision problem, where two particles collide (as reactants) to give rise to two other 

particles (as products). The problem is completely specified when the velocities of the 

fours particles, or 12 degrees of freedom (each velocity has 3 degrees of freedom), are 

determined. Clearly not every single degree of freedom is an unknown in the situations 

of interest to us. Suppose we enumerate all the degrees of freedom to see which is given 

(known) and which is a variable. First if the direction of travel and energy of the 

incoming particle are given, usually the case, this specifies 3 degrees of freedom. 

Secondly it is customary to take the target nucleus to be stationary, so another 3 degrees 

of freedom are specified.  Since conservations of energy and momentum must hold in any 

collision (three conditions since momentum and energy are related), this leaves three 

degrees of freedom that are not specified in the problem. If we further assume the 

emission of the outgoing particle (particle 3) is azimuthally symmetric (that is, emission 

is equally probably into a cone subtended by the angle T ), then only two degree of 

freedom are left. This way of counting shows that the outcome of the collision is 

completely determined if we just specify another degree of freedom. What variable 

should we take?   Because we are often interested in knowing the energy or direction of 

travel of the outgoing particle, we can choose this last variable to be either E3 or the 

scattering angle T . In other words, if we know either E3 or T , then everything else 

(energy and direction) about the collision is determined. Keeping this in mind, it should 

come as no surprise that what we will do with (15.5) is to turn it into a relation between 

E3 andT . 

Thus far we have used non-relativistic expressions for the kinematics. To turn 

(15.5) into the relativistic Q-equation we can simply replace the rest mass Mi by an 

effective mass, M i
eff M i � Ti / 2c 2 , and use the expression p 2 2MT � T 2 / c 2  instead 

of p 2 2ME . For photons, we take M eff hQ / 2c 2 . 

Inspection of (15.5) shows that it is a quadratic equation in the variable x = E3 . 

An equation of the form ax 2 � bx � c 0 has two roots, 
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xr >� b r b2 4ac @/ 2a (15.6) 

which means there are in general two possible solutions to the Q-equation, r E3 . For a 

solution to be physically acceptable, it must be real and positive. Thus there are 

situations where the Q-equation gives one, two, or no physical solutions [cf. Evans, pp. 

413-415, Meyerhof, p. 178]. For our purposes we will focus on neutron collisions, in 

particular the case of elastic (Q = 0) and inelastic (Q < 0) neutron scattering. We will 

examine these two processes briefly and then return to a more detailed discussion of 

elastic scattering in the laboratory and center-of-mass coordinate systems. 

Elastic vs. Inelastic Scattering 

Elastic scattering is the simplest process in neutron interactions; it can be 

analyzed in complete detail. This is also an important process because it is the primary 

mechanism by which neutrons lose energy in a reactor, from the instant they are emitted 

as fast neutrons in a fission event to when they appear as thermal neutrons. In this case, 

there is no excitation of the nucleus, Q = 0; whatever energy is lost by the neutron is 

gained by the recoiling target nucleus. Let M1 = M3 = m (Mn), and M2 = M4 = M = Am. 

Then (15.5) becomes 

E3 ̈
§1� 

1 
¸
· � E1 ̈

§1� 
1 
¸
· � 

2 E1 E3 cosT 0 (15.7)
© A ¹ © A ¹ A 

Suppose we ask under what condition is E3 = E1? We see that this can occur only when 

T  = 0, corresponding to forward scattering (no interaction). For all finite T , E3 has to be 

less than E1, which is reasonable because some energy has to be given to the energy of 

recoil, E4. One can show that the maximum energy loss by the neutron occurs at T S , 

which corresponds to backward scattering, 

E3 = DE1 , D §
¨
© A

A 
�
�1

1
·
¸
¹ 

2 

(15.8) 
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Eq.(15.7) is the starting point for the analysis of neutron moderation (slowing down) in a 

scattering medium. We will return to it later in this lecture. 

Inelastic scattering is the process by which the incoming neutron excites the 

target nucleus so it leaves the ground state and goes to an excited state at an energy E* 

above the ground state. Thus Q = -E* (E* > 0). We again let the neutron mass be m and 

the target nucleus mass be M (ground state) or M* (excited state), with M* = M + E*/c2. 

Since this is a reaction with negative Q, it is an endothermic process requiring energy to 

be supplied before the reaction can take place. In the case of scattering the only way 

energy can be supplied is through the kinetic energy of the incoming particle (neutron). 

Suppose we ask what is minimum energy required for the reaction, the threshold energy? 

To find this, we look at the situation where no energy is given to the outgoing particle, E3 

~0 and T  ~ 0. Then (15.5) gives 

� E*  �Eth ¨̈
§ M 4 � M1 ¸̧

· 
,  or  Eth ~ E *(1�1/ A) (15.9)

© M 4 ¹ 

where we have denoted the minimum value of E1 as Eth. Thus we see the minimum 

kinetic energy required for reaction is always greater than the excitation energy of the 

nucleus. Where does the difference between Eth and E* go? The answer is that it goes 

into the center-of-mass energy, the fraction of the kinetic energy of the incoming neutron 

(in the laboratory coordinate) that is not available for reaction. 

Relations between Outgoing Energy and Scattering Angle 

We return to the Q-equation for elastic scattering to obtain a relation between the 

energy of the outgoing neutron, E3, and the angle of scattering, T . Again regarding 

(15.5) as a quadratic equation for the variable E3 , we have 

2E3 � 
A �1 

A �1E1 E3 cosT � E1A �1 
0 (15.10) 

with solution in the form, 
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E3
1 E1 �cosT � >A2 � sin 2 T @1/ 2 � (15.11)

A �1 

This is a perfectly good relation between E3 and T  (with E1 fixed), although it is not a 

simple one.  Nonetheless, it shows a one-to-one correspondence between these two 

variables.  This is what we meant when we said that the problem is reduced to only 

degree of freedom.  Whenever we are given either E3 or T  we can immediately determine 

the other variable. The reason we said that (15.11) is not a simple relation is that we can 

obtain another relation between energy and scattering angle, except in this case the 

scattering angle is the angle in the center-of-mass coordinate system (CMCS), whereas T 

in (15.11) is the scattering angle in the laboratory coordinate system (LCS).  To find this 

simpler relation we first review the connection the two coordinate systems. 

Relation between LCS and CMCS 

Suppose we start with the velocities of the incoming neutron and target nucleus, 

and those of the outgoing neutron and recoiling nucleus as shown in the Fig. 15.2. 
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Fig. 15.2.  Elastic scattering in LCS (a) and CMCS (b), and the geometric relation 

between LCS and CMCS post-collision velocity vectors (c). Figure by MIT OCW. 

In this diagram we denote the LCS and CMCS velocities by lower and upper cases 

respectively, so Vi = vi – vo, where vo = [1/(A+1)]v1 is the velocity of the center-of-mass.  

Notice that the scattering angle in CMCS is labeled as T . We see that in LCS the center-c 

of-mass moves in the direction of the incoming neutron (with the target nucleus at rest), 

whereas in CMCS the target nucleus moves toward the center-of-mass which is stationary 

by definition.  One can show (in a problem set) that in CMCS the post-collision velocities 

have the same magnitude as the pre-collision velocities, the only effect of the collision 

being a rotation, from V1 to V3, and V2 to V4. 

Part (c) of Fig. 15.1 is particularly useful for deriving the relations between LCS 

and CMCS velocities and angles.  Perhaps the most important relation is that between the 

outgoing speed v3 and the scattering angle in CMCS , T . We can writec 
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1 mv3
2 1 m�V 3 � vo �2 

2 2 

= 1 m�V3
2 � vo 

2 � 2V3vo cosT c � (15.12)
2 

or 

� �E3
1 E1 >�1�D � 1�D �cosTc @ (15.13)
2 

where D >(A �1) /(A �1)@2 . Compared to (15.11), (15.13) is clearly simpler to 

manipulate. These two relations must be equivalent since no approximations have been 

made in either derivation. Taking the square of (15.11) gives 

E3 (A � 

1
1)2 E1 �cos2 T � A2 � sin 2 T � 2cosT>A2 � sin 2 T @1/ 2 � (15.14) 

To demonstrate the equivalence of (15.13) and (15.14) one needs a relation between the 

two scattering angles, T and Tc . This can be obtained from Fig. 15.1(c) by writing 

cosT �vo �V3 cosTc �/ v3 

1� AcosT 
= c (15.15)

A2 �1� 2AcosTc 

The relations (15.13), (15.14), and (15.15) all demonstrate a one-to-one correspondence 

between energy and angle or angle and angle. They can be used to transform 

distributions from one variable to another, as we will demonstrate in the discussion of 

energy and angular distribution of elastically scattered neutrons in the following lecture. 
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