Structure and Symmetry

22.14 – Intro to Nuclear Materials February 5, 2015

Scanned images, unless cited, are from Allen & Thomas, "The Structure of Materials," 1999.

22.14 - Intro to Nuclear Materials

Crystallography – The Common Language of Materials Science

Figure 5.63 High-resolution transmission electron micrograph showing high-angle grain boundary in alumina, Al_2O_3 . This particular boundary is a tilt boundary, with 35.2° misorientation about common $[2\ \overline{1}\ \overline{1}\ 0]$ direction (Kleebe, 1993, p. 365).

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 5.64 High-resolution transmission electron micrograph of grain edge in sintered, reaction-bonded silicon nitride, Si_3N_4 . Grain edge is wetted by amorphous phase (Kleebe, 1993, p. 365).

22.14 - Intro to Nuclear Materials

Crystalline vs. Amorphous

The difference is long-range order, and *symmetry*

(b) Amorphous InP

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://physics.anu.edu.au/eme/research/amorphous.php

22.14 - Intro to Nuclear Materials

Symmetry Evident in Materials

Etch pits in single crystal aluminum

Source: J. H. Seob, J.-H. Ryuc, D. N. Lee. "Formation of Crystallographic Etch Pits during AC Etching of Aluminum." *J. Electrochem Soc.*, 150(9):B433-B438 (2003).

22.14 - Intro to Nuclear Materials

Simplest Operation: Translation

22.14 - Intro to Nuclear Materials

Higher Symmetry

Place restrictions on t_1 and t_2 , and the angle between them.

How many combinations can you think of?

22.14 - Intro to Nuclear Materials

Draw a cell that does the following:

- Contains fewest number of atoms
- Has angles closest to 90 degrees
- Exhibits the most symmetry

Try with different plane groups in class

Choosing Unit Cells Example

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license.For more information, see http://ocw.mit.edu/help/faq-fair-use/.

22.14 - Intro to Nuclear Materials

22.14 - Intro to Nuclear Materials

Miller Indices

22.14 - Intro to Nuclear Materials

Miller Indices

22.14 - Intro to Nuclear Materials

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

22.14 - Intro to Nuclear Materials

22.14 - Intro to Nuclear Materials

Glide

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

22.14 - Intro to Nuclear Materials

Mirror

22.14 - Intro to Nuclear Materials

22.14 - Intro to Nuclear Materials

Square Lattice Symmetry

22.14 - Intro to Nuclear Materials

Moving to 3D

Four new symmetry operators

- Inversion
- Rotoinversion (rotation & inversion)
- Rotoreflection (rotation & reflection)
- Screw axes (rotation & translation)

Inversion

Figure 3.33 An inversion center is created between right and left hands when they are positioned as illustrated.

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

22.14 - Intro to Nuclear Materials

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

22.14 - Intro to Nuclear Materials

Screw Axes

Proper rotation axes

2

з

Rotation followed by translation

n followed by translation	Table	Table 3.3 Allowed Crystallographic Screw Axes			
	n	Components	Proper Rotation Axes	The Eleven Permissible Crystallographic Screw Axes	
Screw axes	1	α τ Designation	0 (or 2π) 0 (or T_{i}) 1		
o	2	lpha au au Designation	$ \frac{\pi}{2} $	$\frac{\pi}{2}\mathbf{T}_{ }$ 2	
21	3	α au Designation	$\frac{2}{3}\pi$ 0 3	$\frac{\frac{2}{3}\pi}{\frac{1}{3}T_{i}} = \frac{\frac{2}{3}\pi}{\frac{2}{3}T_{i}}$ 3 ₁ 3 ₂	
	4	$\alpha \\ au$ Designation	$ \frac{1}{2}\pi $ 0 4	$\frac{\frac{1}{2}\pi}{\frac{1}{4}T_{ii}} \frac{\frac{1}{2}\pi}{\frac{3}{4}T_{ii}} \frac{\frac{1}{2}\pi}{\frac{3}{4}T_{ii}} \\ 4_{1} 4_{2} 4_{3}$	
	6	α au Designation	$\frac{1}{3}\pi$ 0 6	$\frac{\frac{1}{3}\pi}{\frac{1}{3}\pi}\frac{\frac{1}{3}\pi}{\frac{1}{3}\pi}\frac{\frac{1}{3}\pi}{\frac{1}{3}\pi}\frac{\frac{1}{3}\pi}{\frac{1}{3}\pi}$ $\frac{\frac{1}{3}\pi}{\frac{1}{6}T_{ }}\frac{\frac{2}{6}T_{ }}{\frac{3}{6}T_{ }}\frac{\frac{3}{6}T_{ }}{\frac{6}{6}T_{ }}$ $\frac{6_{1}}{6_{2}}\frac{6_{3}}{6_{3}}\frac{6_{4}}{6_{4}}\frac{6_{5}}{6_{5}}$	

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

22.14 - Intro to Nuclear Materials

Screw Axes

Rotation followed by translation

22.14 - Intro to Nuclear Materials

Generalized Rotation Matrix

$$R = \begin{bmatrix} \cos\theta + u_x^2 \left(1 - \cos\theta\right) & u_x u_y \left(1 - \cos\theta\right) - u_z \sin\theta & u_x u_z \left(1 - \cos\theta\right) + u_y \sin\theta \\ u_y u_x \left(1 - \cos\theta\right) + u_z \sin\theta & \cos\theta + u_y^2 \left(1 - \cos\theta\right) & u_y u_z \left(1 - \cos\theta\right) - u_x \sin\theta \\ u_z u_x \left(1 - \cos\theta\right) - u_y \sin\theta & u_z u_y \left(1 - \cos\theta\right) + u_x \sin\theta & \cos\theta + u_z^2 \left(1 - \cos\theta\right) \end{bmatrix}$$

Or more concisely:

 $R = \cos\theta \mathbf{I} + \sin\theta [\mathbf{u}]_{\times} + (1 - \cos\theta)\mathbf{u} \otimes \mathbf{u},$ Where (u_x, u_y, u_z) is a unit vector

22.14 - Intro to Nuclear Materials

Miller Indices in 3D

Directions – [hkl] Families of directions – <hkl> Planes – (hkl) Families of planes – {hkl}

Explore Some Examples

Done in class, using Crystalmaker

22.14 - Intro to Nuclear Materials

Miller Indices – Lattice Parameter

22.14 - Intro to Nuclear Materials

Miller Indices – Directions

22.14 - Intro to Nuclear Materials

Miller Indices – Direction Examples

Draw the following directions:

22.14 - Intro to Nuclear Materials

Miller Indices – Planes

Example:

- (234)
 - Take reciprocals of indices (¹/₂, 1/3, ¹/₄)
 - Multiply so largest index is one (1, 2/3, ¹/₂)
 - These are the plane intercepts on lattice axes

Miller Indices – Directions and Planes

22.14 - Intro to Nuclear Materials

Miller Indices – Plane Examples

Draw the following planes:

22.14 - Intro to Nuclear Materials

Families of Directions & Planes

Figure 5.4 Equivalence of the {110} planes in a cubic crystal; in (d) the lattice is tetragonally distorted, and the (110) and (101) planes are no longer equivalent.

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

22.14 - Intro to Nuclear Materials

Miller Indices – Directions and Planes

In a cubic lattice directions are normal to planes. Example:

- (234)

- [234]

Miller Indices – Angle Between Planes in a Cubic Lattice

22.14 - Intro to Nuclear Materials

Miller Indices – Angle Between Planes in a Non-Cubic Lattice

22.14 - Intro to Nuclear Materials

Miller Indices – Directions Common to Planes

22.14 - Intro to Nuclear Materials

Bravais Lattices

1) Characterize these systems in terms of a, b, c, and angles

2) Why is body-centered monoclinic equivalent to basecentered monoclinic?

Figure 3.66 The fourteen Bravais lattices and the six crystal systems.

22.14 - Intro to Nuclear Materials

Packing Fraction

This slide intentionally left blank...

done in class!

22.14 - Intro to Nuclear Materials

Space Groups

Unique combinations of symmetry, denoted by certain symbols

Find them in:

The Int'l Tables for Crystallography

http://it.iucr.org/

Or for free at the University College of London: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

Example: Triclinic (P1)

http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

22.14 - Intro to Nuclear Materials

Example: Triclinic (P1)

http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

22.14 - Intro to Nuclear Materials

Example Space Groups

http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

178. <u><i>P</i> 6₁ 2 2</u>	179. <u><i>P</i> 6₅ 2 2</u>	180. <u><i>P</i> 6₂ 2 2</u>	181. <u><i>P</i> 6₄ 2 2</u>	182. <u><i>P</i> 6₃ 2 2</u>		
183. <u><i>P</i> 6 m m</u>	184. <u><i>P</i> 6 <i>c c</i></u>	185. <u>P 63 c m</u>	186. <u>P 63 m c</u>	187. <u>P -6 m 2</u>		
188. <u>P -6 c 2</u>	189. <u>P -6 2 m</u>	190. <u>P -6 2 c</u>	191. <u>P 6 / m m m</u>	192. <u>P 6 / m c c</u>		
193. <u>P 6₃ / m c m</u>	194. <u>P 6₃ / m m c</u>]				
Cubic						
195. <u>P 2 3</u>	196. <u>F 2 3</u>	197. <u><i>I</i> 2 3</u>	198. <u>P 2₁ 3</u>	199. <u><i>I</i> 2₁ 3</u>		
200. <u>P m -3</u>	201. <u>P n -3</u>	202. <u>F m -3</u>	203. <u>F d -3</u>	204. <u>I m -3</u>		
205. <u>P a -3</u>	206. <u>I a -3</u>	207. <u><i>P</i> 4 3 2</u>	208. <u><i>P</i> 4₂ 3 2</u>	209. <u>F 4 3 2</u>		
210. <u><i>F</i> 4₁ 3 2</u>	211. <u>I 4 3 2</u>	212. <u><i>P</i> 4₃ 3 2</u>	213. <u><i>P</i> 4₁ 3 2</u>	214. <u><i>I</i> 4₁ 3 2</u>		
215. <u>P-43m</u> 216. <u>F-43m</u> 217. <u>I-43m</u> 218. <u>P-43n</u> 219. <u>F-43c</u> © Birkbeck College, University of London. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.						

22.14 - Intro to Nuclear Materials

22.14 - Intro to Nuclear Materials

Symmetry and Structure, Slide 46

Example Space Groups

http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

	188. <u>P -6 c 2</u>	189. <u>P -6 2 m</u>	190. <u><i>P</i> -6 2 c</u>	191. <u>P 6 / m m m</u>	192. <u>P 6 / m c c</u>
	193. <u>P 6₃ / m c m</u>	194. <u>P 6₃ / m m c</u>			
			Cubic		
	195. <u>P 2 3</u>	196. <u>F 2 3</u>	197. <u>I 2 3</u>	198. <u>P 2₁ 3</u>	199. <u><i>I</i> 2₁ 3</u>
	200. <u>P m -3</u>	201. <u>P n -3</u>	202. <u>F m -3</u>	203. <u>F d -3</u>	204. <u>I m -3</u>
	205. <u>P a -3</u>	206. <u>I a -3</u>	207. <u><i>P</i> 4 3 2</u>	208. <u><i>P</i> 4₂ 3 2</u>	209. <u><i>F</i> 4 3 2</u>
	210. <u><i>F</i> 4₁ 3 2</u>	211. <u><i>I</i> 4 3 2</u>	212. <u><i>P</i> 4₃ 3 2</u>	213. <u><i>P</i> 4₁ 3 2</u>	214. <u><i>I</i> 4₁ 3 2</u>
	215. <u>P -4 3 m</u>	216. <u>F -4 3 m</u>	217. <u>I -4 3 m</u>	218. <u>P -4 3 n</u>	219. <u>F -4 3 c</u>
	220. <u>I -4 3 d</u>	221. <u>P m -3 m</u>	222. <u>P n -3 n</u>	223. <u>P m -3 n</u>	224. <u>P n -3 m</u>
Γ	225. <u>F m -3 m</u>	226. <u>F m -3 c</u>	227. <u>F d -3 m</u>	228. <u>F d -3 c</u>	229. <u>I m -3 m</u>
	230. <u>I a -3 d</u>	© Birkbeck College, University of London. All rights reserved. This content is excluded from our Creative Commons license. For more			

information, see http://ocw.mit.edu/help/faq-fair-use/.

22.14 - Intro to Nuclear Materials

-	0	
Fm	-	m
1 111	-	111

ersity of London.

© Birkbeck College, University of London. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

22.14 - Intro to Nuclear Materials

Explore Some Examples

Done in class, using Crystalmaker

22.14 - Intro to Nuclear Materials

MIT OpenCourseWare http://ocw.mit.edu

22.14 Materials in Nuclear Engineering Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.