Exercise 3. Solving 2-point ODEs.

1. Write a code to solve, using matrix inversion, a 2-point ODE of the form

$$\frac{d^2y}{dx^2} = f(x)$$

on the x-domain [0, 1], spanned by an equally spaced mesh of N nodes. With Dirichlet boundary conditions $y(0) = y_0$, $y(1) = y_1$.

When you have got it working, obtain your personal expressions for f(x), N, y_0 , and y_1 from one of the three supplied sets. And solve the differential equation so posed. Plot the solution.

Submit the following as your solution:

- a. Your code in a computer format that is capable of being executed.
- b. The expressions of your problem f(x), N, y_0 , and y_1
- c. The numeric values of your solution y_j .
- d. Your plot.
- e. Brief commentary (< 300 words) on what problems you faced and how you solved them.

2. Save your code and make a copy with a new name. Edit the new code so that it solves the ODE

$$\frac{d^2y}{dx^2} + k^2y = f(x)$$

on the same domain and with the same boundary conditions, but with the extra parameter k^2 . Verify that your new code works correctly for small values of k^2 , yielding results close to those of the previous problem.

Investigate what happens to the solution in the vicinity of $k = \pi$. Describe what the cause of any interesting behavior is. Submit the following as your solution:

- a. Your code in a computer format that is capable of being executed.
- b. The expressions of your problem f(x), N, y_0 , and y_1
- c. Brief description (< 300 words) of the results of your investigation and your explanation.
- d. Back up the explanation with plots if you like.

22.15 Essential Numerical Methods Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.