Exercise 5. Diffusion and Parabolic Equations.

1. Write a computer code to solve the diffusive equation

$$\frac{\partial \psi}{\partial t} = D \frac{\partial^2 \psi}{\partial x^2} + s(x)$$

For constant, uniform diffusivity D and constant specified source s(x). Use a uniform x-mesh with N_x nodes. Consider boundary conditions to be $\psi = \psi_1$ at x = 0 and $\frac{\partial \psi}{\partial x} = 0$ at x = 1 (the domain boundaries).

Construct a matrix $\mathbf{D} = D_{ij}$ such that $\mathbf{D}.\psi = \nabla^2 \psi$. Use it to implement the FTCS scheme

$$\psi^{(n+1)} = (\mathbf{I} + \Delta t \mathbf{D})\psi^{(n)} + \Delta t s,$$

paying special attention to the boundary conditions.

Solve the time-dependent problem, for $t = 0 \rightarrow 1$, when D = 1, s = 1, $N_x = 50$, $\psi_1 = 0$, with initial condition $\psi = 0$ at t = 0 storing your results in a matrix $\psi(x, t) = \psi_{j_x, j_t}$, and plotting that matrix at the end of the solution, for examination.

Experiment with various Δt to establish the dependence of the accuracy and stability of your solution on Δt . In particular,

- (i) find experimentally the value of Δt above which the scheme becomes unstable.
- (ii) estimate experimentally the value of Δt at which $\psi(t=1)$ is accurate to 1%.
- 2. Develop a modified version of your code to implement the θ -implicit scheme:

$$(\mathbf{I} - \Delta t \theta \mathbf{D})\psi^{(n+1)} = (\mathbf{I} + \Delta t (1-\theta)\mathbf{D})\psi^{(n)} + \Delta t s,$$

in the form

$$\psi^{(n+1)} = \mathbf{B}^{-1}\mathbf{C}\psi^{(n)} + \mathbf{B}^{-1}\Delta t \ s$$

Experiment with Δt and different θ values, for the same time-dependent problem and find experimentally the value of θ for which instability disappears for all Δt .

Also choose a Δt value for which the FTCS ($\theta = 0$) scheme is stable; then find experimentally the approximate optimum value of θ (at that fixed Δt) which produces the most accurate results.

Submit the following as your solution for each part:

- a. Your code in a computer format that is capable of being executed, citing the language it is written in.
- b. The requested experimental Δt and/or θ values.
- c. A plot of your solution for at least one of the cases.
- d. A brief description of how you determined the accuracy of the result.

22.15 Essential Numerical Methods Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.