
22.15 Essential Numerical Methods. Fall 2014 I H Hutchinson

Exercise 5. Diffusion and Parabolic Equations.
Example Solution.

1. Write a computer code to solve the diffusive equation

∂ψ

∂t
= D

∂2ψ
+ s(x)

∂x2

For constant, uniform diffusivity D and constant specified source s(x). Use a uniform x-mesh
with Nx nodes. Consider boundary conditions to be ψ = ψ1 at x = 0 and ∂ψ = 0 at x = 1

∂x

(the domain boundaries).
Construct a matrix D = Dij such that D.ψ = ∇2ψ. Use it to implement the FTCS

scheme
ψ(n+1) = (I + ∆tD)ψ(n) + ∆t s,

paying special attention to the boundary conditions.
Solve the time-dependent problem, for t = 0→ 1, when D = 1, s = 1, Nx = 50, ψ1 = 0,

with initial condition ψ = 0 at t = 0 storing your results in a matrix ψ(x, t) = ψjx,jt , and
plotting that matrix at the end of the solution, for examination.

Experiment with various ∆t to establish the dependence of the accuracy and stability of
your solution on ∆t. In particular,

(i) find experimentally the value of ∆t above which the scheme becomes unstable.
(ii) estimate experimentally the value of ∆t at which ψ(t = 1) is accurate to 1%.

Solution

I wrote my code so that N was a parameter, and it could run multiple cases of dt for that
parameter. I chose my mesh so that the first point was at x = 0, but the final point was
beyond x = 1 by an amount such that xN−1/2 = 1. This allows me to define the dψ/dx = 0
boundary condition by just two terms in the difference matrix, D. Let me illustrate with
N = 6.

x =

0.00000

0.22222

0.44444

0.66667

0.88889

1.11111

D =

-2 0 0 0 0 0

1 -2 1 0 0 0

1



0 1 -2 1 0 0

0 0 1 -2 1 0

0 0 0 1 -2 1

0 0 0 0 2 -2

Then setting s = 0 at the first and last positions: 1, and N , implements the boundary
conditions.

When the solution is completed, I find the maximum value of psi: maxpsi. That’s going
to be my measure of accuracy. There are other choices; it’s not terribly important what you
choose. Since I know theoretically what the stability criterion is, I start by running ten cases
up to the theoretical stability limit of dt=0.0002126. (Now using N = 50: the specified
value.)

nsteps dt maxpsi

47045 0.0000213 0.453754

23522 0.0000425 0.453756

15681 0.0000638 0.453759

11761 0.0000850 0.453762

9409 0.0001063 0.453765

7840 0.0001276 0.453768

6720 0.0001488 0.453771

5880 0.0001701 0.453774

5227 0.0001913 0.453776

4704 0.0002126 0.453779

Here’s what the last solution looks like. The maxpsi is the value at x = 1, t = 1.

Now I increase the range of the dt to 1.01 times bigger. Here’s what I get instead:

nsteps dt maxpsi

46579 0.0000215 0.453754

23289 0.0000429 0.453756

15526 0.0000644 0.453759

2



11644 0.0000859 0.453762

9315 0.0001074 0.453765

7763 0.0001288 0.453768

6654 0.0001503 0.453771

5822 0.0001718 0.453774

5175 0.0001932 0.453777

4657 0.0002147 0.000000

The last case is unstable and the maxpsi is unset because when I detect it is unstable I jump
out of the loop. The partial solution is

And here’s a comparision of the unstable solution with the prior stable ones at the last
time step.

(i) The cases dt = 0.0002126 and 0.0002147 bracket the experimental stability limits, in
excellent agreement with theory.

(ii) This part of the question is (accidentally, sorry) a trick. There is no stable dt for which
the time accuracy is worse than 1%. Look at my first list of maxpsi. With tiny dt, it gives

3



0.453754 and twice as large dt changes only the last significant figure. The least accurate
stable case is then with dt=0.0002126. It gets 0.453779. That’s different from the tiny dt
case by only 0.453779 − 0.453754 = 0.000025 which is a fractional error of only 5.5 × 10−5,
which is far less than 1%. The answer is that effectively any stable dt (≤ 0.0002126) gives
a time-step accuracy much better than 1%.

I haven’t actually shown that the solution is accurate to this level. It is converged in
time-step to this level, but there is presumably also uncertainty arising from finite spatial
differences. I can play around with different values of N to discover the degree of spatial
convergence. Here are some examples:

N nsteps dt maxpsi

10 1430 0.0006993 0.440490

20 6777 0.0001476 0.449460

30 16084 0.0000622 0.451934

40 29351 0.0000341 0.453087

50 47045 0.0000213 0.453754

60 67767 0.0000148 0.454187

70 92915 0.0000108 0.454492

where I’ve shown only the tiny dt=0.1*dtmax cases which have the most accurate time-
stepping. What we see is that the spatial convergence at N = 50 is to approximately 1 part
in 454, i.e. roughly 0.2%. That is the rough level of the error.

Please notice, I don’t need to know an “exact” solution to make these estimates. I
estimate on the basis of seeing the trends in my solutions as I vary the time and space steps.
That’s the way one usually has to work in practice.

2. Develop a modified version of your code to implement the θ-implicit scheme:

(I−∆tθD)ψ(n+1) = (I + ∆t(1− θ)D)ψ(n) + ∆t s,

in the form
ψ(n+1) = B−1Cψ(n) + B−1∆t s

Experiment with ∆t and different θ values, for the same time-dependent problem and
find experimentally the value of θ for which instability disappears for all ∆t.

Also choose a ∆t value for which the FTCS (θ = 0) scheme is stable; then find experi-
mentally the approximate optimum value of θ (at that fixed ∆t) which produces the most
accurate results.

Solution

Not done in its entirety. But clearly the ∆t optimum value isn’t going to be very meaningful
because we already know we are not dominated by time error but space error. The second
part would have made more sense if it had asked for the θ that allows the biggest steps for
some specified time accuracy.

4



MIT OpenCourseWare
http://ocw.mit.edu

22.15 Essential Numerical Methods
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

