
22.15 Computational Nuclear Science and Engineering. Fall 2013

Final Exam
3 Hours. Closed Book. No written or electronic aids.

Finish as many questions as possible in the time.
21 Oct 2013, 9am to 12noon. NW14-1112.

14% 1. Reduce the following ordinary differential equation to a first-order vector differential
equation, which you should write out completely, in vector format.(

d3y

dx3

)2

− 2
d2y

dx2
− dy − y3 = 0.
dx

18% 2. Consider an approximate discrete step in x and y, starting at xn, yn of the ODE dy/dx =
f(y, x). The Taylor expansion of the derivative function along the solution in terms of
δx = x− xn is

dfn
f(y(x), x) = fn +

dx
δx+

d2fn
dx2

δx2

+ . . . . (1)
2!

Subscript n on f and its derivatives denotes evaluated at xn, yn. The approximate scheme
is the following for the step from xn to xn+1 = xn + ∆x:

“Evaluate y(1) = yn + f ∆x
n , then take the step to be yn+1 = yn + f(y(1), xn + ∆x

2 2
) ∆x.”

Document the accuracy of this scheme, using the notation xn + ∆x
2

= xn+ 1 as follows.
2

(a) Express the exact solution for y(x) as a Taylor expansion.
(b) Express the quantity y(1) − y(xn + ∆x/2) in terms of the Taylor expansion.
(c) Express f(y(1), xn+ 1

2
)− f(y(xn+ 1

2
), xn+ 1

2
) to lowest order in y(1) − y(xn+ 1

2
) using ∂f .

∂y

(d) Hence find an expression for yn+1 correct to third order in ∆x, and state the order
to which this scheme is accurate.

18% 3. A diffusion equation in 2 dimensions with suitably normalized time units is

∂ψ

∂t
=
∂2ψ

∂x2
+
∂2ψ

,
∂y2

on a finite domain with fixed ψ on the boundary. It is to be advanced in time using an
explicit scheme.

(n+1) (n)
ψj,k − ψj,k = ∆t Dψ(n).

where ψ(n) denotes the value at the nth time step. The matrix D represents the finite
difference form of the spatial differential operator ∇2 on a uniform grid with spacing ∆x and
∆y in the x and y directions, whose indices are j, k.

(a) Write out the right-hand-side (∆tDψ(n)) of the above discrete difference equation
in terms of a stencil of coefficients (whose values you should specify) times values ψj,k at
adjacent j, k positions, to complete the formulation of the difference scheme.

(b) Consider a particular Fourier mode ∝ exp(ikxx) exp(ikyy). Substitute it into the
difference equation, and rearrange the resultant into the form ψ(n+1) = Aψ(n). Hence find
the amplification factor, A.
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(c) Deduce the condition that ∆t must satisfy to make this mode stable.
(d) By deciding which kx and ky are the most unstable, deduce the requirement on ∆t

for the whole scheme to be stable.

18% 4. Consider the partial differential system in time t and one spatial coordinate x

∂

∂t
u +

∂
f = 0

∂x

where in terms of the components of u (which, incidentally, is not a velocity):   
u v   

u =  v  , f =  v2/u+ w ,
w −kv

with k a constant. Use the chain rule of spatial differentiation of f(u) to write the equations
as

∂

∂t
u = −J ∂

u.
∂x

(a) Find the entire 3× 3 matrix J and write it out in tabular form.
(b) Find the eigenvalues of J.
(c) Under what conditions is this system hyperbolic?
(d) Assuming these conditions are satisfied, what are the characteristic speeds of propa-

gation of disturbances?
(e) If a suitable explicit discrete finite difference scheme is used to solve this system

numerically, then it is stable provided that the Courant-Friedrichs-Lewy (CFL) condition
is satisfied. Unless you have lots of unused time, don’t derive this condition for any par-
ticular scheme. Instead, just state how it relates ∆t, ∆x and the characteristic speeds of
propagation.

14% 5. A random variable is required, distributed on the interval 0 ≤ x ≤ 1 with probability
distribution p(x) = 2(1 − x). A library routine is available that returns a uniform random
variate y (i.e. with uniform probability 0 ≤ y ≤ 1). Give formulas and an algorithm to
obtain the required randomly distributed x value from the returned y value.

18% 6. (a) Write out Boltzmann’s equation governing the velocity distribution function f(t, x, v)
in time, t, and one-dimension in space x, and velocity v, for particles subject to a positive uni-
form constant acceleration a, which collide with a uniform background of stationary targets
of density n2 that do nothing but absorb the particles with a cross-section, σ, independent
of velocity.

(b) Sketch in phase space (x, v) the paths of the trajectories (“orbits”) of the particles.
(c) Obtain the equation of the trajectories in the form v0 = g(x, v), where v0 is the

velocity on the orbit at position x = 0, and g(v, x) is a (relatively simple) function of x and
v, which you must find.

(d) Prove that
f(x, v) = f0(g(x, v)) exp(−n2σx)
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is a solution of the steady-state (∂/∂t = 0) Boltzmann equation. The function f0(v0) is the
distribution function at x = 0.

(c) If f 2
0(v0) = 1/(1+v0) for v0 > 0, then find the distribution function f(x, v) at position

x > 0 and velocity v such that v0 is real, in steady state
(d) If there are no particle sources in the positive half-plane x > 0, what is the value of

f(x, v) in steady state for x > 0, when v is such that v0 is imaginary? Why?
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