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Problem 1 (15%) – Sizing the shell of a spherical containment 

i) 
The principal stresses for a thin spherical shell are: 
 

σr = -(pi+po)/2          (1) 
σθ = σϕ = (pi-po)Rc/(2 tc) 

 
where pi=1.9 MPa and po=0.1 MPa, Rc=12.5 m and tc is the shell thickness.  Hook’s law yields: 
 
 εθ=u/Rc=1/E[σθ - ν (σϕ+σr)]        (2) 
 
where E = 184 GPa and ν = 0.33.  Substituting Eq. (1) in Eq. (2), setting u=1 cm and solving for 
tc, one gets: 
 
 tc=Rc(1-ν) (pi-po)/[2E u/Rc-ν(pi+po)]≈3.7 cm 
 
Since Rc/tc>10, the thin shell asumption of accurate. 
 
ii) 
The primary membrane general stress intensity for this case is: 

Pm=(σθ - σr)≈102 MPa 

σθ and σr were calculated from Eq. (1) (thin shell assumption still applies), for tc=8 cm.  The 

ASME limit is Sm=110 MPa.  Therefore the margin is Sm/Pm≈1.075, or 7.5%. 

 

 

Problem 2 (25%) – Reduction of containment pressure after LOCA 

Conservation of energy for the containment: 
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where 2.0

0 066.0 −= tQQdecay
&& , 0Q& =1000 MW, and ssQ& =20 MW.  Integrating Eq. (3): 
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Expanding the left-hand side, one gets: 
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where Ma, cv,a, T1, Mw and x1 are all known from the problem statement.  The following equation 
holds for the control volume: 
 
Vtot = M w[v f (T2 )(1− x2 ) + vg (T2 )x2 ]         (6) 
 
The containment pressure at t2, P2=0.5 MPa, is the sum of the partial pressures of water and air: 
 

M R TP P (T ) 2
2 = 2 + a a

sat        (7) 
Vtot −M w(1− x2 )v f (T2 )

 
Therefore, Eqs. (5), (6) and (7) are 3 equations in the only unknowns t2, T2 and x2.  Actually 
solving the equations, one finds t2≈14300 s, T2≈140.4 °C and x2≈0.035. 
 
Problem 3 (45%) – Superheated Boiling Water Reactor 

 
i) 
T-s diagram: 

 
 
 
ii) Taking the whole system as a control volume, the conservation of energy yields: 
 
0 = Q& +m& FW (hFW − hsup )  ⇒ m& = Q&FW /(hsup − hFW )      (8) 
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where Q& =1000 MW and hFW and hsup are the specific enthalpy of the feedwater and superheated 
steam, respectively.  The difference hsup-hFW can be expressed as follows: 
 
hsup hFW cp,g (Tsup Tsat ) hfg cp, f (Tsat TFW )
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−++−=− ≈2936 kJ/kg 
 
where TFW= 230°C and Tsup=510°C.  Therefore, Eq. (8) yields FWm& ≈340.6 kg/s. 
 
iii) 
The acceleration pressure drop is 
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where 
A
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= ≈1800 kg/m2s, m& =2270 kg/s, A=1.26 m2 and 
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Since at the inlet there is only the liquid phase, it is finm ρρ =+
, , while at the outlet x=0.15 and the 

void fraction can be found from the fundamental relation of two-phase flow: 
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where S=2, per the problem statement.  Then it is +
outm,ρ ≈240.3 kg/m3 from Eq. (10), and finally 

Eq. (9) yields ΔPacc≈ 9,235 Pa 

 
iv) 
Since the heat flux is axially constant, dryout would occur at the outlet (Point B).  The critical 
quality at the outlet is found to be xcr≈0.344 from the CISE-4 correlation with Lb=3 m, and the 
coefficients a=0.5987 and b=2.2255, calculated for P=6 MPa, Pc=22.1 MPa, G=1800 
kg/m2s>G*=1211 kg/m2s, De=0.02 m. 
Then the critical power of the A→B channels is ])([ ,, fgcrAsatfpABcr hxTTcmQ +−= && ≈1311 MW, 

where TA= 268°C.  So, the 
AB

ABcr

Q
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CPR &

&
,= ≈2.12, with ])([ , fgBAsatfpAB hxTTcmQ +−= && ≈618 MW 

being the operating power of the A→B channels, where xB=0.15. 
 
 
Problem 4 (15%) – Thermodynamic analysis of a new power cycle 
 
To be thermodynamically feasible, the cycle must not violate the 1st and 2nd law of 
thermodynamics. 
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Taking the whole power cycle as the control volume, the conservation of energy (1st law) 
becomes: 
 
0 = Q& −W& +m& sea (hin − hout )          (11) 
 
where steady-state was assumed and Q& =1000 MW, W& =400 MW, m& sea =15000 kg/s, 
(hin − hout ) = csea (Tin −Tout ) , csea =4000 J/kg°C and Tin =288 K (15°C) and Tout =298 K (25°C).  
Using these numbers, Eq. 11 is identically satisfied.  Therefore, the cycle does not violate the 1st 
law. 
 
With the same choice of control volume, the 2nd law becomes: 
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where Tr=723 K (450°C) and 
in

out
seainout T

Tcss ln=− .  Then Eq. 12 yields genS& = 665 kW/K > 0, 

therefore the cycle does not violate the 2nd law either. 
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