
22.312  ENGINEERING OF NUCLEAR REACTORS 
 

Tuesday, December 15th, 2015, 9:00 a.m. – 12:00 p.m.
 

 
OPEN BOOK FINAL EXAMS (SOLUTIONS) 

 
 

Problem 1 (35%) – Containment Heat Transfer and Structural Mechanics 
 
i)  
Heat rejection from the containment can be viewed as the series of three heat transfer processes: 
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where A = 50,000 m2, tc = 25 mm and kc=40 W/m°C are the is the containment surface area, 
thickness and thermal conductivity, respectively; hin = 1,000 W/m2°C and hout = 5 W/m2°C are the 
steam condensation and air convection heat transfer coefficients, respectively; Tout = 30°C and Tin 
= 150°C are the ambient temperature and the temperature inside the containment, respectively; Tci 
and Tco are the (unknown) temperatures on the inner and outer surfaces of the containment shell, 
respectively.  Eliminating Tci and Tco, and solving for the heat rejection rate Q , we get: 
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ii)  
It would NOT make sense to change containment material to a higher thermal conductivity 
material, because the thermal resistance associated with conduction within the containment 
( )/( cc Akt ) is already very small, thus the impact on heat rejection rate would be negligible.  
Efforts should focus on increasing the heat transfer coefficient on the outer surface of the 
containment shell, which is the dominant thermal resistance.  This could be accomplished, for 
example, by spraying the shell with water to induce evaporative cooling, which is the approach 
used in the AP1000 design. 
 
iii)  
The total pressure at the final state (State 2) is: 
 
P2 = Pw2 + Pa2          (5) 
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Where Pw2 = 476 kPa is the partial pressure of the dry saturated steam at T2 = 150°C.  Since the 
volume and mass of air in the containment have not changed, the ideal gas equation of state provides 
the partial pressure of air at state 2 as: 
 
Pa2 = Pa1 T2 / Ta1  141 kPa       (6) 
 
where Pa1 = 101 kPa and Ta1 = 303 K (30°C) are the initial (atmospheric) pressure and temperature 
in the containment, respectively.  Substituting the numbers back into Eq. 5, we find P2  617 kPa. 
 
iv)  
The total mass of steam in the containment at State 2 is: 
 
Mw = Vc /vg  191,000 kg       (7) 
 
where Vc = 75,000 m3 is the containment volume and vg = 0.39 m3/kg is the specific volume of 
saturated steam at 150°C. 
 
v)  
The thin shell theory can be used since Rc /tc = 800 >10, where Rc = 20 m and tc = 25 mm.  Then the 
hoop stress is 
 
θ = (Pin -Pout)Rc /tc        (8) 
 
Solving Eq. 8 for Pin and setting θ = 500 MPa, we find Pin  726 kPa.   
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Problem 2 (40%) – Creating a Two-Phase Mixture from Flashing of Pressurized 
Water 
 
i) 
The throttle reduces the pressure of the fluid from 10 MPa to 6 MPa.  Taking the throttle as the 
control volume, the conservation of mass and energy yield, respectively: 
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where m  = 10 kg/s is the mass flow rate, and we assumed steady-state, adiabatic flow with 
negligible changes in the kinetic and gravitation terms, as usual; hin = 1343 kJ/kg (given in the 
problem statement), hf = 1213 kJ/kg and hg = 2785 kJ/kg are the specific enthalpies of the 
pressurized water at the throttle inlet and saturated liquid and vapor at the throttle outlet, 
respectively.  We also assumed the vapor and liquid phases are in thermal equilibrium at the exit 
of the throttle, per the problem statement.  From Eq. 9 we can readily get the steam quality in the 
channel, x0: 
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ii) 
To identify the flow regime with the map provided in the problem statement, we need to first find 
the superficial velocities: 
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is the tube diameter, f = 758.5 kg/m3 and g = 30.6 kg/m3.  Then the flow map suggests the flow 
regime is annular flow.  
 
iii) 
We resort here to a simple drift flux model: per the textbook (page 628) at high void fraction one 
can take C0 = 1 and in annular flow Ishii proposed Vvj  0.  Thus the drift flux model effectively 
reduces to HEM for which: 
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By comparison the EPRI correlation (which is more cumbersome to use, especially during the final 
exam  ) predicts   0.62. 
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The friction pressure drop in the channel is: 
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where L = 3 m is the length of the unheated section of the tube.  For oof

2  we make use of the 
Friedel correlations (Eqs. 11.99 through 11.101b in the textbook), which is valid for all flow 
regimes in both vertical and horizontal channels.  At the conditions of interest the parameters of 
the Friedel correlation are E  0.962, F  0.140, H  11.67, Fr  25.2 and We  3.14104, of   

0.0112.  Substituting into Eq. 10 we get 2
o  4.15 and Pfric  4.96 kPa. 

 
iv) 
Since the heat flux is axially uniform, dryout would occur first at the channel outlet.  The critical 
quality at the outlet is found to be xcr  0.1562 from the CISE-4 correlation with Lb = 13 m (equal 
to the distance from the inlet of the tube, per the hint in the problem statement), and the coefficients 
a  0.6724 and b  14.98, calculated for P = 6 MPa, Pc = 22.1 MPa, G = 1273 kg/m2s < G*  1306 
kg/m2s, Ph =  D/2  15.7 cm (the heated perimeter) and Pw = D  31.4 cm (the wetted perimeter).  
Then the critical power can be calculated from the conservation of energy: 
 

 infcrgcrcr hhxhxmQ  )1(   1156 kW 
 
The actual power in the channel is hhLPqQ "   283 kW, where "q = 600 kW/m2 and Lh = 3 m 
are the applied heat flux and length of the heated test section, respectively; therefore, there is a 
good margin to dryout in the channel (CPR = 1156/283  4.09) 
 
v) 
The second law of thermodynamics for the throttle (steady-state, adiabatic flow) yields: 
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where sin = 3.23 kJ/kg-K (given in the problem statement), sf = 3.0 kJ/kg-K and sg = 5.9 kJ/kg-K 
are the specific entropies of the pressurized water at the throttle inlet and saturated liquid and vapor 
at the throttle outlet, respectively.  The above result confirms that irreversibilities take place in the 
throttle. 
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Problem 3 (25%) – Sizing the fuel pin of a Liquid Metal Fast Breeder Reactor 
(LMFBR) 
 
i)  
The temperature drop, T, within a solid fuel pellet can be calculated as follows (see derivation in 
the textbook): 
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where kf is the fuel thermal conductivity (assumed independent of temperature) and 'q  is the linear 
power.  The linear power is related to the specific power, mq  , as follows: 
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where f is the fuel density and D is the fuel pellet diameter.  Substituting Eq. 12 into Eq. 11, 
solving for D, and assuming the temperature drop is constant, we can readily get the ratio of the 
fuel pellet diameters for the upgraded and present core: 
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where D1 = 0.51 cm is the fuel pellet diameter in the present core, 1,mq  =120 W/g and 2,mq  =200 
W/g are the specific powers in the present and upgraded core, respectively. 
 
ii)  
The temperature drop, T, within an annular fuel pellet can be calculated as follows (see derivation 
in the textbook): 
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where Dv is the diameter of the hole in the middle of the pellet.  In an annular pellet we have: 
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Substituting Eq. 14 into Eq. 13, assuming the temperature drop and pellet diameter are constant, 
we get one equation in the only unknown Dv: 
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Solving Eq. 15 numerically (not required for full credit), we get Dv  0.185 cm. 
 
iii)  
Solving for kf in Eq. 11, assuming the temperature drop and the pellet diameter to be constant, and 
setting the ratio f2/f1 = 1.2, we get: 
 

1

2

1

2

1

2

f

f

m

m

f

f

q

q

k

k








  = 2 

 
 

6



MIT OpenCourseWare
http://ocw.mit.edu

22.312 Engineering of Nuclear Reactors
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



