
22.312  ENGINEERING OF NUCLEAR REACTORS 
 

Tuesday, October 20th, 2015, 1:00 – 2:30 p.m.
 
 

OPEN BOOK QUIZ 1 (solutions)  
 

 

 

Problem 1 (50%) – Thermodynamic analysis of a cooling tower  
 

i) 
 
Taking the whole cooling tower as the system, the conservation of mass yields: 
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where 4wm  is the mass flow rate of water in the air at Point 4.  The partial pressure of water in the 

air is easily found )( 444 TPP satw  = 4.24 kPa, where 4 = 1 and )( 4TPsat = 4.24 kPa is the 
saturation pressure of water at 30C.  The corresponding density (from the table) is w4 =0.03 kg/m3.  
Since air and water exiting the cooling tower at Point 4 occupy the same volume, the volumetric 
flow rate of water is equal to the volumetric flow rate of air: 
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where the density of air at Point 4 is calculated from the equation of state 
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and 44 watma PPP  96.76 kPa is the partial pressure of air at Point 4.  Finally, Eq. (1) yields 

3wm 16,569 kg/s.  Note that it is therefore necessary to provide make-up water for 431.4 kg/s to 
compensate for evaporative losses in this cooling tower. 
 
ii)  
 
Again taking the cooling tower as the system, the conservation of energy yields: 
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Now, let us expand each term in Eq. (2): 

- Treating subcooled water as an incompressible fluid and recognizing that since P1=P3=Patm, 

we have )()( 31
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- Treating air as an ideal gas, we have )( 2424 TTchh paaa   
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- Note that gw hh 4 =2556 kJ/kg from the table; and 1wh =146.7 kJ/kg from the problem statement. 
 
The only unknown in Eq. (2) is T3, from which T3  17.7C. 
 
iii)  
The answer depends on the humidity of the air at Point 3.  If the humidity is low (i.e. <100%), then 
there is evaporation from the water into the air, and as a result the water discharged at Point 3 will 
be cooler than the water entering at Point 4, T3 < T1.  On the other hand, if the humidity is 100%, 
there is no driving force for evaporation or heat transfer, and as result T3 = T1 = T2 = T4, and thus 
the cooling tower fails to cool the water coming from the condenser. 
 
 
iv) 
Upon coming in contact with the cooler atmosphere, the warm humid air exiting the tower will 
experience some condensation, which results in the generation of tiny droplets.  Those droplets 
deflect the sun light thus making the plume visible. 
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Courtesy of Michael Kappel on Flickr. Used with permission.

https://www.flickr.com/photos/m-i-k-e/6541544051/


Problem 2 (50%) – Transient analysis of a firebrick-based energy storage system  
 
i) 
The mass of air in the vessel is found from the equation of state: 
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where Va =180 m3 and P1 = 2 MPa.  Then the air thermal capacity is Ma cva  9.5105 J/K, which is 
much lower than the firebrick thermal capacity Mb cb  2.5109 J/K, where Mb =3.6106 kg. 
 
ii) 
Taking the firebricks and the air as the system, the energy equation is: 
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where we assumed )()()( tTcMcMtE vaabb   (note that it would be acceptable to neglect the 

thermal capacity of the air, per the result in ‘i’), electricW = -100 MW, the vessel is well insulated (

Q =0), and T(0) = T1 = 950 K.  Equation (3) is a linearly increasing function of time and is plotted 
(for t < t2 = 3 hours) in the figure below.  The maximum temperature reached by the system is T(t2) 

 1378 K.  Note that the pressure of that air at time has risen to 
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iii) 
Again taking the firebricks and the air within the vessel as the system, the conservation of mass 
equation is: 
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Since inm = outm = 300 kg/s, it follows that 
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= 0, and thus the mass of air in the vessel is constant. 

The conservation of energy equation is: 
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where Tin = 950 K constant in time, and it was assumed that the air outlet temperature is equal to 
the system temperature at any given time (per the problem statement), and cpa = cva+ Ra = 1005 
J/kg-K.  Integrating Eq. (4) with the initial condition T = T(t2) at t2, we get:  
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  8361 sec is the time constant of the system.  Equation (5) is plotted in 

the figure below for t > t2. 
 
 

 
 

Figure.  Temperature history of the FIRES system 
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