ENGINEERING OF NUCLEAR REACTORS

Due November 7, 2008 by 12:00 pm

TAKE HOME

QUIZ 2

Problem 1 (75%) – Cooling system for an accelerator target

An electron accelerator is used to generate X-rays for industrial radiography. The electron beam impinges on a tungsten target of thickness $\delta = 2$ mm, width w = 10 mm and length L = 50 mm. The volumetric energy deposition in the target can be described by the following equation:

$$q'''(x,z) = q'''_{\max} e^{-\alpha x} \cos\left(\frac{\pi z}{L}\right)$$

Where $\alpha = 2 \text{ mm}^{-1}$ is the attenuation coefficient for electrons in tungsten, and *x* and *z* are the Cartesian coordinates shown in Figure 1. The target is cooled by $5.3 \times 10^{-3} \text{ kg/s}$ of molten sodium-potassium eutectic alloy (Na-K) flowing along the side not exposed to the beam. The Na-K channel cross section is rectangular with one side being w = 10 mm and the other s = 2 mm, and an upstream length of 300 mm. The Na-K coolant enters the channel at 50°C.

- i) Determine $q_{\text{max}}^{\prime\prime\prime}$, such that the total beam power is 200 W. (5%)
- ii) Calculate the temperature distribution in the target, T(x,z). (45%)

In answering question 'ii' please make the following assumptions:

- Heat conduction in the z and y directions is negligible
- Radiative heat transfer is negligible
- Use the chart below to estimate the heat transfer coefficient; neglect entrance effects
- Use the following material properties (assumed constant):

Tungsten: $k = 174 \text{ W/m}^{\circ}\text{C}$, $\rho = 19300 \text{ kg/m}^3$, $c = 132 \text{ J/kg}^{\circ}\text{C}$ Na-K: $k = 24 \text{ W/m}^{\circ}\text{C}$, $\mu = 4.9 \times 10^{-4} \text{ Pa-s}$, $\rho = 850 \text{ kg/m}^3$, $c_p = 946 \text{ J/kg}^{\circ}\text{C}$

- iii) Find the location and value of the maximum temperature in the target. (10%)
- iv) Sketch qualitatively the axial distributions of the coolant bulk temperature ($T_b(z)$), and the target temperature at x = 0 and $x = \delta$. (10%)
- v) An assumption was made in 'ii' that entrance effects could be neglected in calculating the heat transfer coefficient for Na-K. Is this assumption accurate? (5%)

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Nusselt number for laminar fully-developed flow in a rectangular channel with 3 adiabatic walls. (adapted from the "Handbook of Single-Phase Convective Heat Transfer" by S. Kakaç et al., 1987)

Problem 2 (25%) – Natural circulation flow

Water is flowing in a loop with a single riser pipe and two downcomer pipes (see Figure 2). Heat is added at point A and rejected at point B, so that the temperature difference between the riser and downcomer sections is 30°C. The diameter of the two downcomer pipes is $D_1=10$ cm and $D_2=5$ cm, respectively.

i) Calculate the mass flow rate in the loop. (25%)

Assumptions:

- Neglect all acceleration, friction and form pressure changes in the loop, except for the friction pressure changes in the downcomer pipes.
- To calculate the friction factor in the pipes, ignore entrance effects, assume the flow is turbulent and use the MacAdams correlation.
- Use the Boussinesq's approximation to estimate the water density dependence on temperature. ($\beta = 3 \times 10^{-4} \text{ K}^{-1}$, $\rho_c = 1000 \text{ kg/m}^3$)

Other properties of water at the conditions of interest

 $\mu = 8 \times 10^{-4}$ Pa·s, k = 0.61 W/m-K, $c_p = 4.18$ kJ/kg-K

22.312 Engineering of Nuclear Reactors Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.