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OPEN BOOK QUIZ 2 SOLUTIONS

Problem 1 (65%) — Helium-cooled fast reactor with molten fuel within steel rods

)
The energy equation for the coolant is:
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where Tin = 400°C is the bulk coolant temperature, M =1440 kg/s, cp=5.2 kl/kg°C, and Q =1,500
MW.

The average linear power is Q' =Q /(N .,L)=16.67 kW/m, Npin=30,000 and L = 3 m.

pin
i)
Considering one rod and its coolant channel under the assumptions given in the problem statement

(gravity + friction only, smooth rod surface, fully-developed flow), the total pressure drop can be
expressed as:
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where — AP, =120 kPa (per the problem statement), M = M /N oin=0.048 kg/s, p=4.81 kg/m’, A
is the unknown flow area of the channel (A= p’ —%dfo ), and Py is the wetted perimeter

P,=7d. =31.4 mm. Assuming turbulent, fully-developed flow, a smooth rod and a large

Reynolds number, the friction factor can be found from the correlation
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where [ = 2.8x10” Pa-s. Substituting Eq. (3) into Eq. (2) and solving for A, we get:
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Then the rod-to-rod pitch can be found to be p = 13 mm. At this value of p the mass flux is G =
530 kg/m’s and the Reynolds number is Re ~ 218,270, which confirms the accuracy of the
assumption made.

iii)
Considering only conduction (per the problem statement), the radial temperature distribution within
the fuel can be easily found by integrating the heat equation:
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with boundary conditions dT/dr=0 at r=0 and T=T at r=R¢=Rco-tc= 4.5 mm:
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where ki = 0.7 W/m'K (assumed to be independent of temperature, as per the problem statement)
and the linear power at the conditions of interest is ’'=5.5 kW/m (calculated from the 500 MW
core power). Setting T(r) = Tm = 460°C (the fuel freezing point) in Eq. (4), and solving for r we
get the radius of the molten region as follows:
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Now recall that the temperature on the inner surface of the cladding is:
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where ke= 19 W/m°C, and h = 6955 W/m?°C is the heat transfer coefficient found from the Dittus-
Boelter correlation, which is appropriate for the conditions of interest (non-metallic fluid, fully-
developed, turbulent flow?). Also note that from the conservation of energy for the coolant we get:
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Finally, back substituting Egs. (7) and (6) into Eq. (5), we get:
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! Similar values of the heat transfer coefficient are obtained using other correlations applicable to these
conditions, e.g. simplified Gnielinski’s or Petukhov’s



which is plotted in the figure below. Note that above z = 1.33 m there is no frozen annulus in the
fuel rods.
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Problem 2 (35%) — Passive Residual Heat Removal System

Neglecting all pressure losses in the primary system except for the friction loss in the core, the
momentum equation for the primary loop is:
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where T¢out and Tcin are the unknown core inlet and outlet temperatures, respectively, Mp, is the

unknown mass flow rate in the primary system, Hy = 10 m, feore = 0.02; Acore = 1 m?; Leore =3 m;
Deore = 1.2 cm, f=2x107 1/°C and p = 800 kg/m®. The energy equation for the core is:

Q = MpIC(Tc,out _Tc,in) (10)

where Q =9 MW and ¢ =5.0 kJ/kg°C. Substituting Eq. (10) into Eq. (9) and solving for M ol » WE
get:
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Now let us move to the RHRS loop. Neglecting all pressure losses except for an equivalent form
loss with Kgr = 40 (per the problem statement), the momentum equation for the RHRS loop is:
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where A; = Z Dé and Dr = 15 cm, Trpigh is the unknown hot leg temperature in the RHRS loop,

Treold = 100°C (per the problem statement) and Hr = 10 m. The energy equation for the RHRS is:
Q = MRC(TR,hot _TR,cold) (12)

Substituting Eq. (12) into Eq. (11) and solving for MR , we get:
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Then from Eq. (12), we can get the hot leg temperature in the RHRS loop:
TR,hot :TR,cold +Q/(MgC) ~218.2°C

Finally, since T, —Tg ot =10°C (per problem statement), we get T,

(10):

=228.2°C, and from Eq.

,out

Tein = Teou —Q/AM,C) ~224.2°C
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