Model	Equation of State	Specific Internal Energy	Specific Enthalpy	Specific Entropy
Incompressible Liquid or Solid	ho = const	$u = u_0 + c(T - T_0)$	$h = h_0 + c(T - T_0) + \frac{P - P_0}{\rho}$	$s = s_0 + c \ln \frac{T}{T_0}$
Ideal Gas*	$PV = mRT$ or $\rho = \frac{P}{RT}$	$u = u_0 + c_v (T - T_0)$	$h = h_0 + c_p (T - T_0)$	$s = s_0 + c_p \ln \frac{T}{T_0} - R \ln \frac{P}{P_0}$
Pure Substance**	$\rho = \rho(P, T)$ (single-phase)	u = u(P,T) (single-phase)	h = h(P, T) (single-phase)	s = s(P,T) (single-phase)
	$\frac{1}{\rho} = \frac{1-x}{\rho_f(P)} + \frac{x}{\rho_g(P)} \text{ (two-phase)}$	$u = u_f(P)(1 - x) + u_g(P)x$ (two-phase)	$h = h_f(P)(1 - x) + h_g(P)x$ (two-phase)	$s = s_f(P)(1 - x) + s_g(P)x$ (two-phase)

Constitutive relationships for solids, incompressible fluids, ideal gases and pure substances

* Relation of universal gas constant **R** and specific ideal gas constant R: R=R/A, where A is the molecular weight; $c_p = c_v + R$ ** Phases present to be determined from phase (P-T) diagram MIT OpenCourseWare http://ocw.mit.edu

22.312 Engineering of Nuclear Reactors Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.