
17.8.4	 Effect of Focusing and Channeling on 
the Number of Displaced Atoms 

If in the course of formation of a cascade a recoil 
becomes channeled or develops into a dynamic crowdion. 
the kinetic energy of the recoil is lost to the cascade; i.e., its 
energy is transformed to heat through electronic stopping 
or subthreshold atomic collisions, The probability of the 
occurrence of a crystal effect is a function of recoil energy, 

The notation P(E) is uwd for either of the probabilities Pf 
or P<,,,. However, the effect of focused collision sequences 
on the displacement cascade is quite small owing to the 

upper energy limit Ef of -100 eV in the focusing process. 
The basic integral equation governing cascade formation 

can be modified to account for crystal effects by amending 

Eq. 17.65 to 

The first term on the right represents the lone displaced 
atom (i.e., the PKA itself) which results if the PKA is 
channeled or focused on its first collision. The second term, 
which is weighted with the probability 1 — P(E), gives the 
number of displacements created by a PKA that makes an 
ordinary displacing first collision. This equation can be 
mlved b? the method used in the previous section if the 
probability P is assumed to be independent of energy. 
Taking the derivative of Eq. 17,111 with respert to E then 
yields 

E:=(l–2P)r+P 

which	 can be integrated to give 

,,=cE(’”~~)– P 

1–2P 

The integration constant C can be found by substituting 
this solution into Eq. 17.111: 

1–P 
c’ 

(2E,I )(1 21’) 

The complete solution is therefore 

1,(E)=— 1–P —E ( 2P) 

- ~ (17.112)
1 – 2P 2E,i() 

Equation 17.112 was first obtained by Oen and 

Robinmn.l X Equation 17.112 educes to the Kinchin— 

Pease result (Eq. 17.68) when P = O. The crystal effect 

(principally channeling) is most important for large PKA 

energies, which simply reflects the greater number of recoils 
suweptible to loss from the cascade by this means. For 
P = 77, for example, a 10-keV PKA in iron produces 100 
displaced atoms according to Eq. 17.112. When channeling 
is neglected, twice this number is generated. 

17.9	 DISPLACEMENTS AND DAMAGE IN 
A FAST-NEUTRON FLUX 

Up until this point we have been concerned with the 
methods of calculating v(E), the number of displaced atoms 

produced by a single PKA that receives energy E from a 
collision	 with the bombarding particle. In this section the 
supply	 of ener~ to the atoms of a metal from fast neutrons 

is coupled with cascade theory to permit calculation of the “-” 
rate at	 which va{,ancies and interstitial are produced in a 
specified	 neutron flux spectrum. No account is taken of the 
reduction in the number of displacements due to recombi­
nation	 within the volume of the cascade. 

Let (r,, (E,, ,E) dE be the differential energy-transfer 
cross wction for the production of PKAs with energies in 

(E,dE)	 due to neutrons of ener~ E,,, Each PKA goes on to 
produce	 ~~(E) displaced atoms. If the differential neutron 
flux isd(E,, ), the rate at which atoms are displaced is

IK

R,l = N J’ dEr, d(E,l) s “ 

K~/ \ E{, 

X (JI,(E,,,E) r~(E) dE ‘isp:;.:d(::(~rn: (17.1 13) 

The energy-transfer parameter. ,\, is given by Eq. 17,8,

which, for the case of neutrons, can be written


4A 
>1 = —-	 (17.114)

(1 +A)2 

where	 A is the mass number of the lattice atom in atomic 
mass units. The upper limit on the inner integral of 
Eq. 17.113 is the maximum-energy PKA that can be 
produced	 by a neutron of energy E,,, and the lower limit on 
the outer integral is the minimum neutron energy that 

produces	 a PKA of energy E(I, Neutrons of energies less 
than Eel//\ (which is about 200 eV for the major constitu­
ents of stainless steel) create no displacements by elastic 
collisions	 with the nuclei of lattice atoms. 

Therefore, thermal neutrons (mean energy -0.1 eV) are 
incapable of causing damage to structural or cladding 
metals by direct collision ener~ transfer. However, thermal 
neutrons (:an cauw displacements by becoming abwrbed in 
a nucleus and producing a radioactive species that decays 
by emission of a high-energy gamma ray. The decay-

product atom recoils from this event with sufficient energy 
to displace itself and perhaps a few other lattice atoms. We 
do not treat this process here, inasmuch as the scattering 

collisions between lattice atoms and energetic neutrons are 
far more important in fast reactors than is the damage 
caused by capture reactions involving slow neutrons. 
Problem 17,7 at the end of the chap~r deals with the recoil 
energy of lattice atoms that become radioactive by virtue of 
neutron capture. 

17.9.1	 Displacement Cross Section 

Equation 17.113 can be written in terms of the 
displacement cross section: 

R(I = NfE:d,,\ ~Jci(En) @(En) dEn (17.115) 

where ud	 is 

(Jd(En ) = ~F;@:n un(En,E) v(E) dE (17.116) 

The displacement cross section can be computed if the 

nuclear scattering cross section for neutrons with the 



element comprising 
above, v(E) must be 
function of neutron 
each nuclide (isotopes 
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the lattice is known. As mentioned 
known as well. Graphs giving Ud as a 
energy can then be constructed for 
included) contained in an alloy such 

as steel or zircaloy. This graphical information can then be 
combined with the neutron-flux spectrum characteristic of 
the particular location in the reactor in which irradiation 
occurs in the same manner prescribed by Eq. 17.115. In 
this way the results of experiments conducted in one flux 
spectrum can be used to estimate material behavior in a 
reactor with a different neutron-flux spectrum. 

The scattering of fast neutrons by the nucleus of a 
lattice atom can be elastic or inelastic. In elastic scattering 
the nucleus of the struck atom is not excited to a higher 
energy state as a result of the collision; kinetic energy is 
conserved in the scattering event. In inelastic wattering the 
nucleus recoils from the collision in an excited state. The 
excitation energy, Q, is provided at the expense of the 
kinetic energies of the scattered neutron and the recoiling 
nucleuy total energy rather than kinetic energy is conserved 
in the collision. Inelastic scattering becomes important 
when the neutron energy becomes just a bit larger than the 

excitation energy, Q. When En ~ Q, 
energetically impossible. The lowest 
nucleus generally has an energy of 
ground-state energy. 

In inelastic scattering, one neutron 
nucleus for each neutron absorbed. 

inelastic scattering is 
excited state of the 
-1 YleV above the 

is ejected from the 
At higher neutron 

energies the nucleus may be left in such a highly excited 
state as a result of momentarily absorbing the bombarding 
neutron that two neutrons are emitted in the decay of the 
compound nucleus. ‘1’his interaction is the (n,2n) reaction. 

Because the flux of 
energies of the (n,2n) 
reaction to damage 

neutron scattering. 
Neutron scattering 

fast reactors is low at the threshold 
reaction, the contribution of this 

is smaller than elastic or inelastic 

can also be characterized as isotropic 
or anisotropic. In inelastic scattering 
is first abwrbed by the nucleus, and 
is in reality emitted a very short 
compound nucleus. Becauw abwrption 
of the neutron, the angular distribution 

the incident neutron 
the scattered neutron 
time later from the 

precedes remission 
of the inelastically 

scattered neutrons is to a very good approximation iso­
tropic in the center-of-mass system. 

Below about 0.1 hfeV, elastic neutron scattering is also 
iwtropic in the center-of-mass system. At higher energies, 
however, the elastically scattered neutrons have a distinct 
forward bias. This phenomenon is known as p-wave 
scattering. 

To explicitly account for elastic and inelastic neutron 
scattering, we can write Eq. 17.116 as 

Xuin(En,E)~(E)dE (17.117) 

where u,, , (E,, ,E) and uill (E,, ,E) are the differential 
energy-transfer cross sections for elaslic and inelastic 
neutron wattering, respectively, and Em in and E,n ,,, are 
the limiting recoil energies in the inelastic-scattering 
process. Equation 17.117 can also be written in terms of 
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the differential angular cross sections for the scattering 
reactions by use of t-he first equality in Eq. 17.22: ­

.\En ld(cos O)

ud(En) = 2n 0,1 (E.,0) IT v(E) dE


s Ed <,I


d(cos O) 
+ 277J F,m:ix 

uin(En~) ~ v(E)dE (17.118)
Emin 111 

The angular dependence of the elastic-scattering cross 
section can be written in a series of Legendre polynomials: 

. 
U(,l (E,, ) 

u,, , (En, f?) =— ~i— al(En)Pl(cos O) (17.119) 
z 
1=() 

where u,, (En ) is the total elastic-scattering cross section 
for a neutron energy E,,, Pl is the Itl] Legendre polynomial, 
and values of al are the energy-dependent coefficients of 
the cross-section expansion. At the neutron energies en­

countered in fast reactors. it is sufficient to retain only the 
I = O and 1 = 1 terms in the series expansion of Eq. 17.119. 
Since PO = 1 and PI = cos 0, we can write 

[1 + al (E,, ) cos O ] u,,l(E,,,O)=—- ‘{’)~E~) (17.120) 

where a. has been 
al (En ) represents 

scattering reaction. 
for isotropic elastic 

When scattering 

set equal to unity for normalization and 
the degree of an isotropy of the elastic-

If a ~ = O, the differential cross section 
scattering is recovered. 

is elastic, the angle–enera transfornla­
tion derivative is given by Eq. 17.9 with T and E replaced 
by E and En, respectively: 

d(cos O) .:2 
(17.121)

dE c1 ,IE ,, 

Equation 17.121 is valid for both isotropic and anisotropic 
elastic wattering. 

Since inelastic scattering is isotropic in the center-of­
mass system, u,,, (E,,,() ) simplifies to 

(17,122) 

inelastic-scattering cross section. 
process can excite the struck 

discrete levels having energies Q, 
to a continuum of levels at high 

where Uin (En) is the total 
The inelastic-scattering 

nucleus to a number of 
above the ground state or 
energies. For simplicity, we treat 
only a single discrete state with 

produced. 

Because the recoiling nucleus 
the collision, the elastic-scattering 
transferred to scattering angle, Eq. 

here the case in which 
excitation energy Q is 

has absorbed energy in 
formula relating energy 
17.9, is no longer valid. 

Instead. the collision kinematics must be based on conserva­
tion of total (rather than kinetic) energy, which results in 
addition of a term Q to the right-hand side of Eq. 17.4. The 
analog of Eq. 17.9 for an inelastic collision wherein the 
struck nucleus retains an energy Q is 
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Except for resonances, the elastic-scattering cross sec­
tion, u,, (En ), is more or less constant with neutron energy. 

_ ~_l+l\Q ‘aco~o 
(17,123)

A( En )1 
which reduces to Eq. 17.9 if Q = O. The maximum and 
minimum recoil energies are obtained by setting co O equal 

to –1 and 1, respectively: 

+1( l+AQ )]‘z 
17.124)

A	 E,, 

~_l+44Q 
E,nin = ~.\ E,, 

2A	 En 

–1 ( l+~Q ‘$ 

The inelastic-scattering cros wction, however, sharply 
increases with energy above the threshold (E n )min. The -­
anisotropy factor al (En ) tends to decrease the displace­
ment cross section because forward scattering transfers less 
energy, on the average, than does isotropic scattering. If 
both inelastic 
are neglected 
assumed to be 

wattering and anisotropic 
and the elastic-scattering 
energy independent, Eq. 

elastic scattering 
cross section is 

17.129 reduces to 

(17.130) 
.lEn 

ud(El,) = — (Je , 
4Ed()


In this simplest 
increases linearly 

Inasmuch m 
the lattice atom 

i~En/~Ed is the 

of cases, the displacement cross section 
with neutron energy. 
AEn /2 is the average energy transferred to 
by a neutron of energy En, the coefficient 

a}~erage number of displacements produced(17.125)
A-	 E“ 

of the excited state is 
term under the square­

--)] 

Q (17.126) 

The threshold ener~ for production 
given by the requirement that the 
root sign be greater than zero, or 

(E,, ),,, i,, = 1~~ 

by a neutron of enerw E,,. For 0.5-hIeV neutrons in iron 
(A = 56), the displac~-ment cross section is -350 times 
larger than the nuclear scattering cross section. The total 
displacement rate for this case can be obtained by inserting 
Eq. 17.130 into 

N/lue
Rd = –4E 

d 

= Nut,, 

Eq. 17.115: 

, A 
E,, O(E,, ) dEn 

J Ed/j 

~E “- (D (17.131)
4Ed(’-) 

where uin(E,, ) is zero for 
The transformation 

transfer is 

E,, < 
from 

(E”)min. 
scattering angle to energy 

d(cos O) 

~ dE irI 21-”	
where En is the average neutron energy and cl) is the total--l ‘*[1-+ ‘17127)
neutron flux (with energies above Ed ~,A). For the condi-

Substituting Eqs. 17,120, 17.121, 17.122, and 17.127 into 
17.118 yields 

‘\ K,, 

U(I(En) = ():,: [J,. , (En) S[ l+al (En) 
n Ed 

( 2E Oi,, (E*) 

x l–~E~ )1 l’(E)dE ‘-l-j”l+ A Q ‘a 

( A En ) 
[,:max 

x u(E) dE	 (17.128) 
s Emin } 

If more than one excited state contributes to the inelastic 
scattering process, the last term in Eq. 17.128 is replaced 
by a sum over the excited states. each with its particular 

uirjtQ,Em...andEmi,,. 

To proceed further, we must specify i/(E), A simple 

result can be obtained by using the Kinchin—Pwase expres. 
sion for P(E). Substituting Eq. 17,68 into Eq. 17.128 and 
neglecting Ed compared to ,\ E,, in the first integral results 
in 

tions 

u’, ,	 = 3 barns 
–.

4) = 101 < neutrons cm “ see-] 

,IE,, 
= 350 displaced atomslneulron collision 

4Ed 

we find that Rd is 9 x 101 “ displaced atoms cm-”] ser-] . 
Or, dividing by N, the displacetnent rate per atom (dpa/see) 
is -10<” ; each atom in the metal is displaced from a normal 
lattice site once every 12 days. 

Although Eq. 17.130 is useful for illustrating the order 
of magnitude of the displacement cross section, it is not 
sufficiently accurate for predicting mechanical-property 

behavior under irradiation. Doranl “ and Piercyz’) have 
calculated displacement cross sections for stainless steel and 
zirconium, respectively, using the I,indhard model for v(E) 
(Eqs. 17.90 to 17.93) and available data on the energy 
dependence of the el~stic- and inelastic-.wattering cross 
sections and the anisotropy parameter a, (En ). Figure 17.17 
shows the displacement cross section for stainless steel. The 
jagged appearance of the curves is due to resonances in the 
elastic scattering cross section. 

‘17129’ Figure 17.18 shows the differential neutron-flux spectra‘(’lll(E1l)!-:::l} in two fast reactors and one thermal reactor. ‘1’he average 

We have assumed for illustrative purposes that the maxi. neutron energy in the all-metal Experimental Breeder 

mum PKA energy ,lE,, is less than the ionization limit given Reactor II (E BR-11) core is 0.85 hleV. In the mixed-oxide 
by Eq. 17,43. Fast Test Reactor ( FTR) core, the average neutron energy 
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Fig. 17.17 Displacement cross section for stainless steel, 
(After Ref. 19. ) 
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Fig. 17.18 G)mparison of neutrotl-flux spectra for three 
reactors (FTR, Fast Test Reactor; ERR-II, Experimental 
Breeder Reactor II; ETR, Engineering Test Reactor). The 
FTR and EBR-11 are fast reactors; the ETR is a thermal 
reactor. The fission-neutron-energy spectrum is shown for 
comparison. (After IV. N. McElroy and R. E. I)ahl, Jr., 
ASTM Special Technical Publication No. 484, p. 375, 
American Society for Testing and klaterials, 1970. ) 

is 0.45 MeV. The fission neutron spectrum (average 
ener~ = 1 MeV) is shown for comparison. To compute the 
displacement rate in stainless steel, we multiply the curve of 
Fig. 17.17 by one of the spectra in Fig. 17.18 and integrate 
the product according to Eq. 17,115. 

17.9.2 Damage Functions 

The ultimate objective of calculating Rd is to permit 
prediction of the extent of a particular mechanical-property 
change in a fast reactor from the results of experiments 
conducted in irradiation facilities that have considerably 
different neutron-flux spectra. Typical mechanical-property 
changes induced by fast-neutron irradiation are the yield 
strength, the ductile-to-brittle transition temperature, and 
swelling. It is by no means generally true that the change in 

any of these properties is proportional to the number of 

interstitial pairs created by irradiation, mechanical proper­
ties such as yield strength are determined by the cluskrs of 
vacancies and interstitial loops that remain after the nascent 
cascade has annealed and the isolated vacancies and 
interstitial have disappeared at the various sinks in the 
solid. The proper theoretical approach in the latter case is 
to compute the production of stable point-defect clusters 
resulting from radiation, not the total number of displaced 
atoms. This can be accomplished by replacing ~J(E) in 
Eq. 17.116 with the number of clusters that are produced 
by a PKA of energy E, which may be estimated from 
computer simulations of radiation damage. The resulting 
rate of cluster formation, Rcl,lst{,r, should be a better 
measure of the damage (i.e., tbe yield-strength change) than 
is the rate of formation of total displaced atoms, R,l. 
Calculations of this sort have been perf~rmed by Russcher 
and Dahl.2 ] 

These completely theoretical atternpk to predict some 

microwopic property of radiation damage (e.g., rate of 
formation of displaced atoms or rate of formation of 
clusters) are not sufficient 10 correlate macroscopic prop­
erty changes in reaclors of different flux spectra primarily 
because other conwquences of irradiation besides the 
number of displacements or clusters affect the macroscopic 
property in question. Thus, although kroid formation 
certainly depends on the rate of production of vacancies 
and interstitial atoms by radiation, it is also a functiotl of 
the quantity of heliutn gas generated by (n,a) reactions in 
the metal becauw helium appears to be necessary to 
stabilize embryo voids. (calculation of the displacement rate 

R,l, no matter bow accurate, provides no information on 
the helium-production rate. 

Because of the inability of displacement calculations to 
cope with the complexity of most macrowopic radiation 
effects, a semiempirical method, known as tbe damage 
funclion method, has evolved.22 In this method the rate of 
displaced-atom production appearing on the left-hand side 
of Eq. 17, 115 is replaced by the change in a particular 
macroscopic property in a time t of irradiation, and the 

displacement cross wction on the right is eliminated in 
favor of a function G(En), which is to be determined. The 

damage function for the particular mechanical property is 
G(E,, ). Thus, Eq. 17.115 is replaced by 

j’: Gi(En) @(En)rfEn
Jpi = ([,t. --— (17.132) 

j“: +(E” ) dEn 

In this equation, APi reprewnts the change in the property 
labeled by tbe index i during an irradiation of time t in a 
neutron flux ~J. Tbe spectrum of the flux in the irradiation 
facility is @(En). The equation has been multiplied and 

divided by tbe total neutron flux 

(17.133) 

so the ratio @(Em)/f@(En) dEn is a normalized flux 
spectrum. The product (I~t ]s LiIe total neutron fluence. 

The term Gi(En) is tbe damage function for property 
for neutrons of energy En. The conditions under which the 

i 



property pi is measured after irradiation and the ~ondltions 
(exclusive of the neutron flux) during irradiation must be 
carefully specified. The damage function depends on these 
nonneutronic conditions, For instance, if Pi is the yield 
strength of a particular metal, the temperature at which the 
irradiation and the subsequent mechanical test are carried 
out must be known. The derived damage function may 
change if either of these two auxiliary conditions is altered. 

The technique for obtaining Gi(En) is to measure ~Pi in 
as many different (but known) neutron-flux spectra as 
possible. One then attempts to deduce a single function 
Gi( En) from the data obtained in eaeh irradiation by using 
equations of the form given by Eq. 17.132. This process is 
called damage-function unfolding. Deduction of Gi( E,, ) 
from a set of measured APi values in different neutron-flux 
spectra is analogous to the determination of the flux 
spectrum of a reactor by activation of foils of a number of 

neutron absorbers of different energy-dependent capture 
cross sections. The damage function is determined by 
iterative solution of the set of equations given by 
Eq. 17.132; a first guess of Gi(Ell ) is inserted into the set of 
integrals, and the calculated property changes API are 
compared with (he measured values. The function G,(E,, ) is 
then adjusted, and the calculation is repeated until the 
measured property changes are reproduced as closely as 

possible by the integrals on the right of Eq. 17.132. 
In this process both the number of iterations required 

and even the accuracy of the damage function ultimately 
ob~ained depend on lhe availability of a good first guess of 
the damage function. The best initial estimate of G,(E,, ) is 
the displacement cross section U,I(E” ) 011 the assumption 
that the damage (i.e., the change in the mechanical 
property in question) should be roughly proportional to the 
number of displaced atoms. 

Figure 17.19(a) shows the damage functions for the 
yield strength and swelling of stainless steel determined by 
the method described above. The units of the damage 
functions are those of the properly Iyield strength in kilo 

Newtoms per square meter (kNlrn2), swelling in percent(~~)] 
divided by the total neutron fluence (unik of neutronsl 
cm2 ), Each damage function was determined from tests 
conducted in several different reactors with different flux 
spectra. The dashed lines in the graphs are the displacement 
cross section of Fig. 17.17 extended to lower energies than 
in Fig. 17.17. The increaw of fJd(E,, ) and Gi(E,, ) at neutron 
energies below -10-4 hfeV is due to damage produced by 

recoil atoms activated by (n.7 ) reactions with slow neutrons 
(the cross sections for capture reactions are proportional to 

the inverse of the neutron speed). Although the damage 
function is appreciable at very low neutron energies, the 
property change AP, is not greatly affected by this 
low-energy tail of Gi(Erl ) becauw the flux spectrum of fast 
reactors contains relatively few low-energy neutrons 

(Fig. 17.18). The insensitivity of damage to low-ener~ 

neutrons is reflected by the breadth of the error band for 
En < 10-4 lleV in Fig. 17.19(a). 

The yield-strength damage function is very close to the 

displacement cross section used as the input first guess of 
Gi(En ). This accord implies that whatever features of the 
displacement cascade are responsible for an increase in the 
strength of irradiated steel are at least proportional to the 
number of displaced atoms. The damage function deduced 

Fig, 17.19 Damage functions for two radiation effects in 
304 stainless steel, (a) Yield strength for irradiation and test 
temperatures of -180° C. I From R. L. Simmons et al., A’~icl. 
l’cctlllol., 16: 14 (1972 ).] (b) Swelling at 450’C lFrom 
R, L. Simmons et al., T/a~~S. ~lt?~er. IY~ic1. Sot., 15: 249 
(1972 ).1 

from the initial guess G,(En ) - constant is shown as the 
dotted curve in Fig. 17.19(a). This curve is vastly different 
from the damage function oblained with the aid of an input 
displacement function. for which the initial guess is 

G,(E,, ) m ud(En). The dotted curve is incorrect and reflects 
the stringent requirement of a good first guess if the 
iterative method is to converge to the correct damage 
function. 

Figure 17.19(b) shows the damage function obtained 
for stainless-steel swelling due to void formation. The 

damage function for this property change is similar to, but 
not identical to, that for the yield strength. 

17.9.3 Damage Production by Ion Bombardment 

‘rhe extent of radiation damage produced by exposure 
of a structural metal to a fast-neutron flux depends on the 
duration of irradiation. The damage increases with the 
fast-neutron fluence, which is the product of the fast-
neutron flux, ~1~,and the irradiation time, t. The economics 
of nuclear power requires that the fuel of commercial fast 

breeder reactors remain in service for a fluence in excess of 
1023 neutronslcm2 (i.e., for a year at a flux approaching 
10’6 neutrons cm-2 see-l ). Accurate assessment of the 
durability of structural metals for use in LNIFBR cores 
requires that the radiation effects produced at these 
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fluences either be measured directly in an irradiation 
facility where the expected fluences can be obtained or be 

extrapolated from tests at much lower fluences by recourse 
to an appropriate theoretical model. Acceptable theoretical 
models are often not available for particular radiation 
effects, and sound fuel-element design can be achieved only 
by testing to the expected service fluences. This situation 
applies to swelling of the cladding due to void formation; 
no accurate theory is available for prediction of void 
production, and extrapolation of low-fluence swelling data 
is risky because the phenomenon is not linear with fluence. 

Even if adequate irradiation facilities with a fast-
neutron flux of 101 5 neutrons cm-2 see-’ were available, 
3-year-duration tests would be required to attain the design 
fluences of an LMFBR core. In a test facility with a flux of 
1014 neutrons cm-2 see-’ , 30 years would be necessary. 
There is therefore a great incentive to devise irradiation 
tests that can simulate fast-neutron damage at fluences of 
1023 neutrons/cm2 in a reasonable amount of time (say of 
the order of days). 

Bombardment of metals by energetic heavy ions has 
proven to be a useful tool for compressing the time scale of 
irradiation tests by many orders of magnitude. Reasonable 
currents of H+, C+, and metal-ion beams of energies from 1 
to 10 MeV can be obtained from accelerators. Because the 
range of heavy ions in solids is quite small (typically 10 
pm), all the initial energy of the ion can be dissipated in a 
small volume of the specimen. Since the number of 
displaced atoms in an irradiation experiment is a reasonable 
measure of the extent of radiation damage, we calculate the 
rate at which a beam of energetic heavy ions causes lattice 

displacements and compare this figure with that attainable 
in fast-neutron irradiations. 

Figure 17.20 shows some features of ion stipping in 
solids. In Fig. 17.20(a) a beam of ions enters a solid target 
with energy E,.. The ions slow down in the solid and come 
to rest at a depth given by the projected range. Figure 
17. 20( b) shows the energy-loss characteristics of the ions 
while traversing the solid. Because the incident energies are 
in the million electron volt range, electronic excitation is 
the principal energy-loss mechanism over most of the range. 
Figure 17. 20(c) shows schematic plots of the electronic and 
atomic stopping powers as functions of ion energy. The 
electronic stopping power is based on Eq. 17.52, and the 
atomic stopping power is obtained by inserting the appro­
priate cross section for energy transfer from the ion to the 
lattice atoms into Eq. 17.29. The ion energy at depth x can 
be obtained by integrating the electronic stopping-power 
formula of Eq. 17.52: 

Ei(x) = (Eio )14–;kx 1
2 

(17.134) 
[ 

The number of atomic collisions between the ions and 
the lattice atoms at depth x can be calculated from the 
following considerations. Let u(E,,E) dE be the differential 
cross section for transferring energy in the range (E,d E) to 
lattice atoms by an ion of energy Ei. The probability of a 
collision between an ion and a lattice atom in dx which 
transfers energy in the range (E,d E) is N o(E,,E) dE dx (see 
Eq. 17.19). Since I ions/cm~ pass depth x per second, the 
number of collisions per second in the volume element of 
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Fig. 17.20 Paths and energy loses of ions penetrating 
wlids. 

unit cross-sectional area and thickness dx which transfer 
energy in (E,dE) to the atoms in this element is 
NI (~(Ei,E) dE dx. C)r, the number of collisions per unit 
volume per unit time which transfer energy in (E,d E) at 

depth x is NI ~(Ei,E) dE. Now the number of displaced 
atoms for each collision that produces a PKA of energy E is 
v(E). Therefore, the rate of production of displaced atoms 
at depth x is 

,\El 
Rcl(x) = NI j~d ‘u(Ei, E) v(E) dE 

displaced atoms 
(17.135) 

cms -see 

where Ei is given in terms of x by Eq. 17.134 and .1 is given 
by Eq. 17.8. Multiplication of the above equation by the 
irradiation time t and division by the lattice atom density N 
gives the number of displacements per lattice atom in 
irradiation of ftuence It: 

displacemen~ = It ,’\ k: i 

dpa = — –ac u(E,,E) v(E) dE (17.136) 
s Ed 

Division of Eq. 17.136 by the fluence yields,’\,
E

dpa 

at depth x = J u(Ei,E)~(E)d E (17.137)
(ions/cm’ ) Kc, 

A simple illustrative integration of the right-hand side of

Eq. 17.137 can be obtained if the cross section ~J(Ei,E) is
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assumed to be given by the Rutherford formula and if the 
Lindhard model is used for v(E). Substituting us. 17.37 
and 17.90 into Eq. 17.137 and assuming the coefficient 
&(E) in Eq. 17.90 to be a constant equal to ‘0.5, we obtain 

d pa 

(ions/cm* ) = “:;;’ (%)’n(%) ‘17’38) 

where the subscript i denotes the incident ion and the 
unsubscripted properties refer to the lattice atom. Eval­
uating the right-hand side of Eq. 17.138 for bombardment 
of nickel by 20 MeV C+ ions gives a damage rate at the 
target surface (Ei = EiO) of ‘3 X 10-1 s dpa/(ions/cm2 ). 

Inasmuch as Ei decreases with x, Eq. 17.138 shows that 
the damage efficiency should increaw until just before the 
ion stops. Kulcinski et al.z 3 have used Eq. 17.137 to 
determine the efficiency of displacement production by 
various ion beams. Figure 17.21 shows graphs of the 
displacement-damage effectiveness for various ions imping­
ing on nickel. 
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Fig. 17.21 Displacement-damage effectiveness as a func­
tion of penetration depth for ions impinging on nickel. 
(From Ref. 23.) 

The amount of damage produced in a given time 
depends on the intensity of the ion beam. For medium-
weight particles, such as H+ and C+, intensities of the order 
of 10 14 ions cm-2 sec 1 can be obtained from accelerators. 

The maximum intensities of heavy-ion beams, such as Ni+ 
and Ta+, are roughly an order of magnitude smaller. Using 

the maximum displa~ment rate for 20-,MeV C+ ions from 
Fig. 17.21 and a C+ beam intensity of 1014 ions cm”z see-[ 
shows that up to ‘4 x 10”) dpa/sec can be achieved. By 
way of comparison, the calculated figure for a fast-neutron 
flux of 1015 neutrons cm-z sec 1 based on Eq. 17.131 gives 

a displacement rate of ‘10-6 dpa)sec, The ion bom­

bardment is ‘4000 times as effective as neutron bombard­
ment; the same number of displaced atoms are produced by 
a 6-hr ion bombardment as are produced by a 3.year 

.­
neutron	 irradiation. 

Ion bombardment is not simply a matter of telescoping 
the time state of damage production. Figure 17.21 shows 
that the damage is contained within a very thin layer of the 
specimen close to the surface and moreover varies by an 
order of magnitude with depth. Fak-neutron damage, on 
the other hand, occurs rather uniformly throughout the 
entire volume of the metal. Such a variation in displacement 
efficiency over the damaged zone in an ion-ho mbarded 
metal is equivalent to a comparable variation in fluence in 
neutron irradiation. Damage effects in ion bombardment 
are contained in a narrow band between a free surface and 
undamaged bulk solid at depths greater than the ion range. 
The influence of the nearby free surfam and the close 
proximity of the highly damaged ?mne to undamaged metal 
on radiation effects involving migration of the point defects 
created by the collision cascades is difficult to assws. 

17.10	 COMPUTER SIMULATION OF 
COLLISION CASCADES 

Sections 17.7 and 17.8 of this chapter reviewed the 
analytical methods of predicting the principal feature of a 
collision cascade, namely, the number v(E) of displaced 
atoms (and hence the number of vacancies) created by a 
PKA of energy E. The simplest model due to Kinchln and 
Pease was modified to account for 

1. A realistic energy-transfer cross section. 
2. Continuous electronic energy loss during cascade 

formation. 

3. Channeling of recoils. 
Each of these factors reduces the predicted value of V(E) by 

some 10 to 50~;, depending on the PKA energy. All 
analytical cascade theories, however, deal with the mechan­
ics by which a collection of isolated Frenkel pairs is created 
by an energetic atom. That is, no interaction between the 
vacancies and the interstitial or between point defects of 
the same type was permitted. The former process leads to 
mutual annihilation of Frenkel pairs and is accompanied by 
a marked reduction in V(E). The latter process accounts for 
the clustering of like point defects; these clusters are the 
precursors of interstitial dislocation loops or embryonic 
voids. Both of these entities exert a powerful influence on 
the mechanical behavior oft he irradiated metal. 

Within the last decade the advent of large computers 
has made possible the direct solution of the equatiom of 
motion of a large enough collection of atoms (a crystallite) 
to accurately simulate a macroscopic crystalline specimen 
undergoing irradiation. z 4 t” In these computer experi­
ments, one atom in a static assembly of several hundred to 

several thousand atoms arranged in one of the cubic 
structures (fee or bee) is given an initial pulse of kinetic 
energy in a particular direction. This initial state simulates a 
lattice atom struck by a fast neutron and thereby trans­
formed into a PKA. The PKA goes on to strike one of the 
neighboring atoms, which is set in motion (and displaced if 
the energy transfer is great enough). The entire sequence of 
collisions between atoms in the crystallite is followed as a 



function of time. The positions of all atoms in the 

crystallite during the cascade is governed by a set of several 
hundred equationsof motionof the type 

dzx, 
F,(xl,xz, . . .. x.,)

‘1 dtz 

(for i- 1,2, .,,.n) (17.1:39) 

where F1 is the force on the i(l~ atom due to the repulsive 
interaction of its neighbors. These forces may be repre­
sented as the sum of the pair-interaction potentials between 
the i~llatornand the surround ing atoms: 

E ;)v 
F,= ~ 

,:1 II 

where r,, lx, XII is the distance bet}veen the illl and jlll 
atom of time t. Since the repulsive force represented by the 

gradient of the interaction ~tcntial V is short range, only 
atoms in the immediate vicinity of the ill] atom (nearest 
and next. nearest neighbors) need be included in the above 
sum. ‘rhe potent ial+nergy function is of the form shown in 
Fig. 17.5. Since typical kirletic energies of moving atoms in 
the cascade are -10 keV, potential functions of the 
Born-\Iayer type are most frequently used. As in analyt.. 
ical cascade theory, displacement is assumed to occur if a 

struck atom receives energy in excess of a step threshold h;{l 

(usually taken as 25 eV). 
\\’~ first examine th{, results of computer simulations 

for Pti,l energies close to the displacement threshold. 

Figure 17.22 shows the atom trajectories created by a 
40-e V knock-on in a small crystallite (about 500 atoms) of 

copper. According to Eq. 17.64, only one hlenkel pair is 

[001] [0111 

t 

+ [0101 

created by a 40+’V PKA. The atom Iabelled A in the figure 
is the PKA. The diagram represents a section through the 
( 100) plane, in which the atom positions are denoted by 

large circles. The small dots represent the centers of the 
atoms. The initial direction of the PKA in Fig. 
17.22(a) lies in the (100) plane at an angle of 15’ to the 

[O1OI direction. Atom A strikes atom B with sufficient 
energy transfer to displace B. After the collision, A falls 
into the site vacated by B. This is called a )c[~la(’(’I?lc)r( 
collision)?, Atom B then goes on to dislodge C which, 

however, does not have sufficient energy left to displace D. 
The final positions of the atoms along the [010 I direction 

are marked with primes; a vacant site is left at the original 

PKA position, atoms A and B occupy the former sites of B 
and C, respectively, and atom C becomes an interstitial. 
These movements constitute a miniature focused replace­

ment sequence of the type described in Sec. 17.8. The 
remaining atoms in the crystallite receive subthreshold 
increments of energy and simply oscillate about their 
equilibrium p)sitions. The wriggles about the initial atom 
centers in the diagram show the motion of the atoms during 

the cascade. Focux>d energy propagation is apparent in the 
[011 ] direction, as expected, and to a lesser extent along 

the [001 ] direction from atom A. 

Figure 17.22(b) shows the sam event with a change in 
the takeoff direction of the PKA, which is 22.5” with 
respect to the [010] direction. In this case th(> [011] 
focused replacement chain is activated, and a dynamic 
crowd ion propagates in this direction. The displaced atom 
appears at E’ at the end of the period of cascade formation. 
only focused energy transfer occurs in the 1010 ] direction, 
which in the previous case provided a displaced atom as 

well. The vacancy is produced at A. 

[0011 f 
[0111 

t .1, 

[010] 

(a) (b! 

Fig. 17.22 Atom trajectories and displacements due to 
copper. The PKA was created at A. For two PKA takeoff 

[After Gibson et al., Phys. Reu., 120:1229 (1960 ).1 

a 0.04-keV 
directions: 

(40 eV) PKA in 
(a) 15’ to [010]. 

the 
(b) 

( 100) plane of 
22.5’ to [0101. 



17.10.1 Displacement Spikes 

In the preceding discussion of a near-threshold collision 
cascade, the question of the spatial configuration of the 

displaced atoms was trivial; only one Frenkel pair was 
created, and, thanks to focusing, the vacancy and inter­
stitial were sufficiently separated to prevent annihilation by 
spontaneous recombination. tn collision cascades produced 
by high-energy PKAs, however, many Frenkel pairs are 

created, and their relative positions are crucial in deter­
mining the number of them that survive annihilation or 
immobilization by clustering. 

The question of the configuration of the displaced 
atoms and vacancies in a collision cascade was investigated 

analytically by Brinkmanz 7 before large computers were 
available to describe the cascade in atomic detail. Brink man 
calculated the mean free path of an energetic recoil in the 
lattice and found that when E was of the order of sekeral 
tens of kiloelectron volts the spacing between successive 
collisions approached atomic separation distances. This 
means that every atom in the path of the primary is 
displaced and the cascade cannot be thought of as a 
collection of isolated Frenkel pairs. The essence of Brink-
man’s analysis can be conveyed in the following simple (but 
not very accurate) calculation. The mean free path for any 
type of collision is defined by Eq. 17.23, The particular 
type of collision of interest here is the one that causes 
atomic displacement, i.e., which transfers energy in excess 
of E<,. The cross section for this process is given in terms of 
the differential energy-transfer cross section between lattice 
atoms by 

(J:,(E)= j,:, u(E,T) dT (17,1.10) 

Note that fJ~i(~) is not the same as the displacement cross 
section of Eq. 17.116, which refers to the number of 

displaced atoms created by a neutron of a particular energy. 
Equation 17.140 has nothing to do with neutrons. In order 
to evaluate {J~i( E), we use the equivalent hard-sphere model, 
for which (J(E,rr) is given by Eq. 17.39 (with 1 = 1 in the 
present case since identical atoms are involved in the 
collision). Insertion of Eq. 17.39 into Eq. 17.140 and 
integration yield 

U;{(E)= a(E) ()1 – ‘ii (17.141) 

where u(E) = 4mr~)(E) is the total collision cross section 
between lattice atoms, one of which is moving with 
energy E. The term r,,(E) is the equivalent hard-sphere 
radius, which we take to be given by Eq. 17.41. Thus we 
have for U(E) 

(J(E) = np’ In ~ (17.142)[01 
2 

Finally, the mean free path for displacement collisions is 

given by 

1 1 
ld(E)=— (17.143) 

N u!(E) = Nu(E)[l – (Ed/E)] 

Equations 17.142 and 17.143 are plotted in Fig. 17.22. The 
Born–Mayer constants for copper shown in Fig. 17.5 ilave 

been used. The onset of C1OSI?IYspdced displacement 

collisions (i.e., when 1[1is of the order of 3 to 10 i) is seen 
to lie betwcwn a few tenths of a kiloelectron volt and — 
several kiloelectron volts. Because the reduction in 1,1 with 
PKA energy is rather gradual at low en~rgy. assignment of a 
specific energy at which a displacement spike is generated is 
impossible, \Ve also do not know whether collisions must be 

separated by one, two, or three intemtomic distances to 

generate a displacement spike. Finally, the 1(1(k;) curves are 
very sensitive to the interaction potential used in the 
calculation and to the method used to estimate energy 
transfer. IIowever, all calculations of this sort suggest that 
the displacements caused by a recoil with an energy 
between 1 to 10 keV are separated by only one or two 
lattice parameters. Now the average energy of the PKA 

produced by a neutron flux in which the average neutron 
energy is E,, is given by 

(17.1.!4) 

For stainless steel (A = 60) in a typical LhlFBR core (E,, = 
0.5 lleV), the above formula shows that the average PKA 
energy is about 15 keV, which is just about the energy at 

which the displacement collisions become separated by 
distances of the order of a lattice parameter. Thus the bulk 
of the PKAs generated in the cladding of a fast reactor 
should crest e collision cascades that consist of displacement 
of eve~ atom in the path of the PKA. 

I 
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Fig. 17.23 Displacement mean free path and total collision 
cross section for copper atoms moving in copper. 

\Vhat does such a collision cascade look like? It most 
certainly does not resemble the collection of isolated 
Frenkel pairs enviwged in analytical cascade theory. Figure 
17.24 shows Brink man’s conception of the collision cascade 
created by a typical 5- to 20-keV PKA. The high density of 
collisions along the path of the primary ejects atoms 
outward. These atoms appear as a shell of interstitial atoms 
surrounding a hollow core of vacancies. Brinkman called 
this collision cascade a displacement spike. Itwould seem 
that the configuration shown in Fig. 17.24 is unstable, and 
indeed it probably is. The @llapse of the structure, 
however, need not resuft in annihilation of a}l the vacancies 
and interstitial that were formed, although it is likely that 
a large fraction of the point defects will be eliminated very 
soon after the energetic event is over. 
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Brinkman proposed the displacement spike before the 
phenomenon of focusing was discovered. Seeger~ H modi­
fied Brinkman’s picture of the displacement spike to 
account for the long-range tmnsport of the atoms struck by 
the PKA by focused collision sequences. Seeger’s schematic 
of the closely spaced collision cascade is shown in Fig. 
17.25. The main difference between the configurations 
shown in Figs. 17.24 and 17.25 is the greater separation of 
the annular shell of interstitiats from the central core of 

vacancies in the latter. This difference is due to the 
transport of displaced atoms as dynamic crowdions. Seeger 
called the nearly empty hole a (f?pl(~lc[lzone,


The displacement spike of Fig. 17.24 or the depleted 
zone of Fig. 17.25 mmt be regarded as educated guesses of 

the configuration of a collision cascade. Quantitative 

description of the displacement spike was made possible 
only by computer simulation of crystallite large enough to 
contain the secondaries and higher order recoils of PKAs 
with energies in the range from 5 to 100 keV. 

Fig. 17.24 Original version of the displacement spike. 
[After J. A. Brinkman, Amer. J. Ph.vs., 24:251 (1956), I 
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Fig. 17.25 Later version (still qualitative) of the displace­
ment spike. , vacancy, �. intentitiai atom. –---, path of 
neutron. ---, path of PKA. (After Ref. 28. ) 
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Fig. 17.26 timputer simulation of displacement spike due 
to a 5-keV PKA in iron. All out-of-plane damage has been 

projected onto the (001) plane shown in the figure. 
(a) Recoil trajectories. (b) Vacancies and interstitial atoms 
at end of the collision cascade (0’’K). The diagonal line in 

(b) shows the effect of channeling (see text). (After Ref. 
26. ) 

The cascade shown in Fig. 17.26 represents the final 
configuration of the displaced atoms and vacancies in bcc 
iron resulting from interaction with a 5-ke V PKA. The 
temperature of O°K is a%igned to the calculation becauw 
no motion of the point defects which requires thermal 
act ivat ion (i.e., processes with a rate governed by a 
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Fig. 17.27 Displact’ment spike due to a 20-ke V PK.! in iron projected onto the {001) plane (0’ K). I After 
J. R. Beeler, Jr., Phys. RcL’., 150:170 ( 1966 ),] 

Boltzmann factor) is allowed. Spontaneous recombination to channel. In this case it loses essentially all its energy by 
of vacancies and interstitial has been included by simply electronic stopping while moving down a [ 110] channel. 
removing from the calculation any ;acancy that is within a Figure 17.27 shows a displamment spike created by a 
sphere containing ’30 lattice sites around an interstitial 20-keV PKA in iron. The numbers on the plot indicate 
and vice versa. The size of this s~ntaneous recombination clusters of point defects. The cascade is slightly larger than 
volume is not well established (see Sec. 13.4). Lines joining the 5-keV cascade and is elongated in the direction of the 
adjacent vacancies indicate stable vacancy clusters. which initial PKA. The Klnchin—Pease formula (Eq. 17.68) 
are formed by chance during cascade generation. predicts that 20,000/(2 x 25) = 100 Frenkel pairs should 

Figure 17.26(a) shows the trajectories of all the have been created by the 20-keV PKA. There are 198 
displaced atoms projected onto the (001) plane. The short vacancies and 198 interstitial in Fig. 17.27. The reduction 
thick track is that of the PKA, and the paths of the in displacement efficiency is due primarily to spontaneous 
wcondary knock-ons are represented by heavy dotted annihilation of defects of opposite type which happened to 
tracks. The thin dashed or solid tracks are those of the have been created wit hin the 30-site recombinant ion ~olurne. 
higher order recoils. Figure 17 .26(b) shows the damage 
pattern created by the trajectories of Fig. 17.26(a). Again 
the three-dimensional configuration has been projected 

17.10.2 Annealing of Displacement Spikes 

onto the (001 ) plane for illustrative purposes. The quali­ \Vhen a collision cascade is produced in a metal at a 
tative concepts of Brink man and Seeger are confirmed by temperature greater than absolute zero, thermal motion of 

the computer experiment. The interstitial appear in a shell the point defects produces recombination and clustering 

around a vacancy-rich core [lower left-hand corner of Fig. beyond that which occurred in the nascent cascade. The 

17.26(b)]. Focused collision chains were responsible for lifetime of cascade formation can be considered to be the 

removing the interstitial from the core. In addition, the interval between the initial energizing of the PKA and the 

importance of channeling is dramatically illustrated; all stopping of the last higher order recoil. Cascade lifetimes, 

damage ahove the diagonal line in Fig. 17.26(b) disappms including spontaneous recombination of unstable Frenkel . .. 
when a very slight change is made in the initial PKA pairs, are -10-’3 sec. The annealing period during which 

direction to permit the head-on secondary in Fig. 17 .26(a) the spike matures into a more or less stable entity requires 



from 107 to 10 “ sec 
point defect to make 

jumps). At the end of 
very mobile components 

divacancies and mono­

(which is the time required for each 
several hundred to several thousand 

the annealing period, most of the 
of the spike, such as mono- and 

and diinterstitials, have escaped 
from the spike ccnter (which isrougbly where the PKA~vas 
born) and have joined the genera] point-defect ppulation 
in the bulk of the metal. JVhat remains of the initial 
collision cascade is a collection of practically immobife 
clusters of interstitial atoms and vacancies and a few 
sluggish monovacancies. Theclustersrnay either very slowly 
atrophy by thermally shedding point defects or grow by 
accretion of mobile point defects from the environment. 

t~oranz” has developed a computer simulation of 
displacement spike annealing. The calculation uses as input 
information O“K cawade mnfigurations such as those 
shown in Figs. 17.26 and 17.27. The pint defects are 
permitted to commence random walks in the damaged 
solid. A hIonte Carlo technique is used to determine the 
jump directions of each p)int defect. Since the interstitial 
are quite a bit more mobile than the vacancies, the 
interstitial are ~rmitted to jump more frequently than the 
vacancies. The jump frequencies of these two point defects 
are related by (Chap. 7): 

some of	 which contain a sizable number of point defects. 
Figure 17.29 shows the effect of the short annealing period 
on the distribution of clust,ers in the spike. Aftbough 93(’; 
of the interstitial atoms were present as isolated pint 

dc~fects at the start of the anneal [ Fig. 17.29(a)], the 

number of mono- and diioterstitials remaining after anneal­
ing is just about equal to the number of interstitial 
contained in clusters of three or more members. Vacancy 
clustering during the anneal is even more nonuniform [ Fig. 
17.29(b) 1. Only about 7(’; of the vacancies present in the 
nascent cascade (whether clustered or not) survive the 

annealing as r~l(jllova(,[illci(~s. ‘[’he r(,st (­ 13’, of the initial 

quantity) are (’ontained in clusters of fou r or more 
vacancies, 

17.10.3 Cascade Overlap 

The final state of the annealed cascade typified by Fig. 
17.28 is stable for relatively long times. In a prolonged 
irradiation, it is likely that a second or even a third 

displacement spike will be created in the same region of 
solid as the first one. Beeler’~() bas examined the conse. 
quences of cascade overlap by computer simulation tech­
niques. The result of three collision cascades similti to the 
one shown in Fig. 17.26 at nearly the same location is 
shown in Fig. 17.30. Spike annealing was not considered.:“xp(?)c>sp(-’’i)’)h’onetheless, a 25-vacancy cluster was found in the particu-

The migration energy of a \acancy, c, , is quite a bit larger 
than that of an interstitial, c,; so w,)w, is greater than unity 
and is temwrature dependent. At low temperature (i.e., 
300’’K), w,/w V is several thousand, and, at temperatures of 
about 800’K, the ratio is ‘1OO. Real time during the 
anneal is not computed accurately (there is no need to do 
so )—the point-defect jump rate serves as a clock during 
annealing. The ratio of the jump rates is chosen to be 
consistent with the same annealing time. For example, 

6000 interstitial jumps and 60 vacancy jumps at 800”K 

lar experiment shown in Fig. 17.30. \Vbetber a cluster 
grows or shrinks as a result of the interactio~l of cascades 
depends on a large number of factors, including the 
separation and directions of the PKAs initiating the 
successive spikes and the relative size of the spikes (i.e., 
initial PKA energies). In particular, the vacancy clusters in a 
spike can be destroyed by the long-range dynamic crowd-
ions from a nearby ( not necessarily overlapping) collision 

cascade, One is led to expect that vacancy clusters in an 
irradiated metal will reach a saturation concentration at 
large fast-neutron fluences. 

17.11	 FISSION-FRAGMENT COLLISION

CASCADES IN NUCLEAR FUELS


% far, the theoretical analysis of radiation damage has 

been restricted to monatomic substances. Although corn. 
puter simulation of collision cascades in metals is rather 
advanced, very little comparable work on binary inorganic 
compounds has been reported. Reference 3 describes low-
energy PKA computer simulations of displacement cascades 
in lead iodide, and Beeler and f3esco have studied radiation 

damage in beryllium oxide.~ 1 No computer simulation of 
damage in heavy-metal oxides has been published, Most of 
the analytical studies intended to elucidate the damaging 
effect of fission fragments on reactor fuels have been 
confined to uranium metal. To apply these results to 
mixed-oxide fuels, we must consider the collisional proper­
ties of oxygen. The simplest approach to this problem is to 
consider the interaction of the fission fragment with two 
monatomic substances, one consisting of uranium atoms 
and the other composed of oxygen atoms. The radlation­
damage parameter for the compound UOt is assumed to be 
the average of the values for the two elemental calculations. 

both correspond to 
If a point defect 

tion volume around 
are annihilated. A 
adjacent to a cluster 
increases the cluster 

a real time of ‘1O “ sec. 
jumps into the prescribed recombina­


a point defect of op~site sign, the two

point defect moving into a lattice site


com~sed of the same type of defect

size by one.’~ If a point defect joins a 

the cluster shrinks by one. 

continued until a stable state is 
occurs’ after most of the mobile 
been annihilated or incorporated 
anneal escape from the spike. At 
up to 80”; of the defects in the 

cluster of opposite type, 

Tbe computation is 
attained, which usually 
interstitial that have not 
into clusters early in the 
the end of the anneal, 
nascent cascade have been annihilated (this figure is in 
addition to the losses that occurred by athermal point-
defect recombination during cascade formation). The-anni­
hilation loss increases as tbe temperature becomes bigher. 

The final state of the 20-ke V cascade shown in Fig. 
17.27 after annealing at 800’K is depicted in Fig. 17.28. 
Twelve interstitial that have escaped from the confines of 
the region covered by the diagram are not shown. The 
annealed displacement spike consists mostly of clusters, 

*Next-nearest-neighbor vacancies also form stable clus­
ters. 
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Fig. 17.28 Displacement spike Iprojected onto the (001) plane] due to a 20-ke V PKA in iron after 
annealing at 800° K (6000 interstitial jumps and 60 vacancy jumps). The preannealed spike is shown in 
Fig. 17,27, Numbers on the diagram denote cluster sizes. Twelve interstitial have migrated outside the 
range of the diagram and are not shown. (After Ref. 29. ) 

There is some justification for this approach. Because the 
energy-transfer parameter \ ( Eq. 17.8) is unity for U—U 

and O-O collisions but only 0.23 for O—U collisiom, a 
uranium PKA transfers energy more efficiently to the 
cation sublattice than to the anion sublattice. Similarly, a 
mllision cascade begun by an oxygen PKA tends to remain 
on the oxygen sublattice. Considering radiation damage in a 
binary fuel as the sum of two independent elemental 
damage problems is at least preferable to simply assuming 
that UOZ behaves as uranium metal. 

In this section, we use the above approach to calculate 
two quantities that were used in Chap. 13 to describe 

different features of fission-fragment interaction in oxide 
fuels, namely, the Frenkel-pair yield per fission YVi and the 
microscopic fission-gas re-solution parameter b. To treat 
these problems in a concise, yet tolerably accurate, manner, 
we introduce a number of simplifying assumptions, the 
most significant of which is the independence of the total 
stopping power of the ficsion fragment (electronic plus 
atomic) on energy. Because of the large initial energy of the 
fission fragments, ’90% of the energy loss is due to 
electronic stopping, which is better approximated by the 

square-root stopping law (Ref. 3, p. 219 and Ref. 32) than 
by a constant stopping power. However, the constant 
stopping-power simplification is often applied to describe 
fission-fragment slowing down and will be employed here. 

17.11.1	 Frenkel-Pair Yield 
Fragments 

A general relation between 
fission-fragment flux (assuming 
a specific energy Ef~’x ) can be 

from Fission 

the energy	 spectrum of the 
all fragments to be born at 
obtained as follows. We do 

not yet invoke the constant stopping-power axumption. 
Consider a sphere of unit cross-sectional area at some pint 
within the fuel and set @(Eff) dEff as the number of fission 
fragments with energies in the range (Eff, dEff) crossing 

this unit sphere per second. Since the stopping power vs. 
energy fermi.da provides, by integration, a unique relation 

between fragment energy and penetration distance, all 
fragments in the energy range (Eff,dEff) which crox the 
unit sphere must have come from a spherical shell of 
thickness dx at a radial distance x from the unit sphere. The 
volume of this shell is 4rrx2 dx. The rate at which fission 
fragments are produced per unit volume of fuel is 2F, 
where F is the fission density. Of those fragments born at a 

distance x from the unit sphere, a fraction 1 /(47rx2 ) crosses 
the latter (the angular distribution of the fission fragments 
being isotropic). Thus the energy spectrum of the fission-
fragment flux is 

@(Eff) dEff = 2F(4rrx2 dx) ~ = 2Fdx 
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Fig, 17.29 Cluster distributions following a 20-ke V PKA 
collision cascade in iron. The nascent cascade (preannealed 
state) contained about 200 of each type of point defect. 
Annealing at 800” K. (a) Interstitial. (b) Vacancies. (After 

Ref. 29. ) 

Now the distance interval dx can be related to the energy 
range dEff by the definition of the stopping p)wer: 

d ~ = .-. .d-Eff 
(d Ef(/dx)t,, ~ 

where (d E;f,/dx), (,t is the sum of the electronic and atomic 
stopping powers for both oxygen and uranium (taken 
together). ‘rh~ energy spectrum of the fission-fraglment flux 
is 

2ti
,;)(~f ~) .	 ——–— ..— (17.145)

(dEf~/dx)~,,t 

If we now introduce the constant stopping-power assump­
tion, (dE;ff dx)t{, t can be replaced bv E~~I’ ‘Mff. where pff 
is the range of fission fragments “in the fuel. Equation 

17,145 reduces to 
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Fig. 17.30 A 25-vacancy cluster formed by the overlap of 
three successive 5-ke V displacement spikes in copper 
(0’’ K). (After Ref. 30. ) 

(17.116) 

The rate at which displacf~d atoms are produced by fission 
fragments is obtained by the same arguments that led 10 
Eq. 17,113 for fast neutrons. Division of the displacement 
rate per unit volume by the fission density yields the 
Frenkel-pair yield per fission on the uranium sublattice: 

,i’Eff 
x s {J~~.[,(E~f,~) v(E) dE (17.147) 

EC* 

where NC, is the density of uranium atoms and .1’ is tbe 
energy-transfer parameter for collisions between fission 
fragments and lattice uranium atoms. Assuming the fission-
fragment mass to be one-half the uranium atom mass, 

(17.148) 

‘ro evaluate the integral in Eq. 17.147, we take 
v(E) E/(2 Ed) and ~rff.{,( Eff ,E) as the Rutherford cross 
section between fission fragments and lattice atoms ( Eq. 

17,37): 



. ~ Llff 1 
fJff. [,( Eff, E) = flZ~fZi, e 

( ~1,, )“”--­EffE2 
(17.149) 

Subject 10 the ab{J\e simplifications, the Frenkel-pair yield 
per fission in uranium is 

~[,n(~+.-)]’(17.150) 

\Vhen e\aluated for the heavy fission fragment ( E~~”’ = 67 
hIeV, range in UOz ~ 6 pm) on the uranium sublattice in 
tJO: (N[ = 0.025 c1 atornsl.l’] ), the above formula gives 
(Y, ,)( = 2.8 X 10<. For the same fission fragment inter­

acting with ~he osyg(’n sublatt.ice of UO~ (N’(l = 0.019 0 
atoms ‘\~ ), the Frenkel-pair yield is (Y~,){J = 5.5 x 104 
We weight these yields with the probability that the fission 
fragment collidos with an oxygen or uranium atom, The 
weighting function is 

Probability of a ff collision with a U atom 

which yields a Frenkel-pair yield in UOZ of 2.4 x 10? This 
figure can be reduced by nearly an order of magnitude if 
the collision cascades on each sublattice are not isolated 
from each other, as has been assumed. 

17.11.2 The Microscopic Re-solution Parameter 

In Sec. 13.7 the parameter b governing the probability 

per second of ejection of a gas atom from a bubble into the 
fuel matrix was derived on the assumption that direct 
encounters of the gas atoms and fission fragments con­
trolled the process. Here we analyze the dynamics of 
fission-gas re-solution when the collision cascades genemted 
by fission fragments pa%ing near the bubble cause energy 
transfer to gas atoms. That is, instead of transferring energy 
directly from the fission fragment to the gas atom, the 
former first energizes the lattice atoms, which then transmit 

their energy to the gas atoms. JVe follow the treatment of 
Nelson (Ref. 45 of Chap. 13) who only considered the 
collision cascades on the uranium sublattice; the oxygen 
sublattice was ignored. 

The collision cascades created by energetic fission 

fragments in a region of fuel containing bubbles set up a 

flux spectrum, ~(&), of recoil atoms (which, following 
Nelson, are taken to be uranium atoms). The term E, is the 
energy of a recoil atom, which may vaW from zero to 

\’E~/<”. Consider a fission-gas bubble containing m gas 

atoms immersed in a spatially uniform flux of recoil atoms. 
The recoil flux in the fuel is asumed to be the same as the 

recoil flux in the gas bubble. Let R,IX be the rate of 
collisions between recoils and gas atoms in the bubble 

which result in transfer of energy to the latter in excess of 
the minimum required for re-solution (T,,, i,, ). Let the 
differential energy-transfer cross section between uranium 
recoils and gas atoms be (J LI.C( E, ,’I’). where ‘r is the energY 

imparted to the gas atom by collision with a recoil of 
energy Er. ‘I’he re-solution parameter is given by Rdg /m, or, 
on formulating R<lg in an analogous fashion to the ._ 

displacement rate in Eq. 17.147, by 

‘l’E* 
x s o[l. g(E,,T) dT (17.151) 

‘~111111 

Note that Nelson does not account for multiplication of the 
collision cascade within the bubble; v(T) is set equal to 
unity. 

To evaluate b we must derive expressions for the 
recoil-flux spectrum, ~(E, ), and the differential cross 
section for scattering of gas atoms by recoils, (J(J .K( Er,’r). 
Let us consider the latter quantity first. Nelson argues that 
since the recoils ha~e energies below ‘1OO keV the 

equivalent hard-sphere approximation can be used to 

determine the cross section. Thus we may write ( Eq. 
17.39): 

(17.152) 

where 2r,, is the distance of closest approach between a 
recoil of energy E, and a stationary gas atom. This quantity 
is obtained from the interatomic potential between these 

two species, Vc. g(r), and the criterion relating the distance 
of closest approach and the relative kinetic energy of the 
collision. The latter is given for equal max collision 
partners by Eq. 17.17. For the present case the relative 
kinetic energy of the collision is hlgE,/(hlg + ll[T ), where 
the recoil-atom mass is that of uranium. If we assume the 
gas-atom rndss to be the same as that of the fission 
fragments (the gas atoms were once fission fragments), we 
find the unequal mass analog of Eq. 17.17 is 

i~e now need an expression for the potential function 
V,, .E(r). Nelson takes the inverse-square potential ( Eq. 
17.36 withs = 2): 

(17.154) 

in which the constant A is determined by matching the 

above potential to the wreened Coulomb potenlial, Eq. 
17.34, at r = a, where a is the screening radius given by Eq. 
17.35. From this we deduce 

A = Z(,Zffaez exp(—1) (17,155) 

where we have taken ZK = Zff. 
timbining Eqs. 17.153 to 17.155 gives the equivalent 

hard-sphere radius, from which the desired cross section 
follows from Eq. 17.152 

(J(,.K(~,,rr) ‘~ (17.156) 
1 
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where, using the s[’reeoing radius fortnula given by Eq. 
17.35 withk = 1. the constant K isk 

Inserting numerical values for the quantities in Eq. 17.157, 
W[) find K ‘ 2.1 X 10 1~ e~’-(lll~ 

k~e now approach the more difficult task of calculating 
lhe recoil-flux spectrum, (,!I(I;r). The analysis involves only 

moving lattice atoms and is not affected by the presence of 

gas atoms in bobbles. The energy of the PK,I produced by 
collision of a fission fragment with a lattice atom is denoted 
by L. The energy of the higher order recoils in the collision 
cascade is designated by Er. Consider first the caw in which 
one PKA of energy E is produced in the lattice per unit 

volume per unit time (i e., the distribution of PK~l energies 
is not yet considered). lye wish to calculate the sk}wing­
down density of recoils due to this rnonoenergetic unit 
sour((): q, (E, Er) rt,(’oils sl~)wing doJvn past en(, rgy Er p(,r 
cubic centimeter per second clue to a source of one PKA of 
energy E per cubic centimf, ter per second. The recoil 
slowing-down density defined shove is entirel} analogous LO 
the neutron slowing-down density commonly (ncountere~i 
in reactor physics analyses. 

The first collision of the PK,I produces one secondary 
of energy T while the PK,I energy is degraded to E — T 

(Fig. 17,8). Just as in the analysis of the number of 
displaced atoms in Sec. 17.7, the slowing-down density due 
to th(’ PK.JI is equal to the sum of lhe slowing-down 

densities of the two moving atoms arising from tht’ first 
collision: 

ql(E,E, )=ql(T,E, )+ql(k; -–T, 1,) (17.158) 

lVe now invoke the hard. sphere scattering assumption and 
take the probability of an enewy transfer in the range 
(T,dT) to be dT/E. The right side of Eq. 17.158 is weighted 
with this probability and integrated over all possible recoil 
energies. \Ve must, however. carefully consider the contri­

butions to the slowing down density from the five regions 
of energy transfer T shown in F]g. 17.31. 

f<cgic)t~ [: O < T < E,l; (E — E,l) Z (E —T)< E. }t~hen 
the secondary receives an energy less than E,,, it is not 
displaced and so contributes nothing to the slowing-down 

density. The scattered PKA, however, contributes to q, 
The contribution to q, from region I is 

1~s
(I)=o+—
ql ~Fl ql(~–’r.~r) d(E– T)

E .,~

1 (’r,E,——i ql)d’rsE-E~


*Nelson’s cross section differs from the value given by 
combining Eqs. 17.156 and 17.157 by a factor ot’ 2’$/(Z~: + 
Zfi)’+ = 0.25, One of the Bohr radii in Nelson’s Eq. 10 
should have been the screening radius. Other than this 
error, his formulation reduces to the present one if it is 
noted that the Rydberg energy is equal to ez /2a B. 

I/(IgioIt //: E,, < T < ( E – K,): K, . (E; – ‘r) ~ 

( K – E,l ). In this region the secondaq contributes only 
1 atom (itself) to q] ,aod 

or 

E–E, –E,i 1 q,(T,E)drrqf[’)s1.:
E +—EK,


//c#i(~/? /1/: (11– E,.)< T< E,: (E–E,). (K---’1’)K 
El. [n this type collision, both the s<,attered PK,l and the 
secondary are reduced in energy below L;r and I hus 
contribute 1 atom each to q , llow~, ver, they (,annot rause 

any more displacements that contribute to q, 

1 I.:r Kr

qf[”) = ; (l)d’ r+; (l)d(E -T)


J J b:-I.:~ ‘. J l:-KU 

-2(2%’) 
l{rgi~](l /v: & < T < (E- E(l); E,l~ (k;–’r) < 

(E– E,). I{egion IV is ~qoivalent to region 11 (by sytnmetry 
of the diagram of Fig. 17.31 ), and we have 

(Iv) -.! 
~, 

ql q, (T,E,) drrfE I’:r 

1 l!. K--E,–K,,
q[ (’l’,El) dr + -- —v --­--JE [’:’~[1 

I{cgiotl V: (E – E,l ) < T K E: O “~ ( E –- T).’ E,l R(gion 
V is equivalent to region 1: 

1 l,: 

qfk’) ‘~ ql (’1. E,) dTJ f l“:-1’:(1 

Add ing the preced iog five com p) nen ts of tht’ slowing-down 
density yields 

2( E,– E(I) 2 b: 
ql(E,Er)= +—~ ~: ql (’r,E, ) [1’1’ (17.159)

E s ‘r 

A similar analysis for E, Z E/2 produces the same result. 
Converting this integral equation to a differential equation 
and solving the latter by the same methods applied to Eq. 
17.65 (i.e., differentiation with respect to E) yields the 
solution 

q, (E, E,) = E f(E,) 

The function f(Er) can be obtained by inserting the above 
solution for q, into the integral equation, which results in 

Er – E(l ~ 
ql(E,E, ) ‘2 ~ (for Er < E) (17.160)()r 
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Fig. 17.31 IJiagranl for calculating the recoil slowing-down 
density due to contributions from five regions of eoergy of 
the secondary. 

Note that 

in accord with the Kinchitl-Pease result for the number of 

displaced atoms: the latter are jusl recoils that have slowed 
down to energies less than 2E{1. 

Since we are generally interested in recoil energies far 
above the displacement threshold Eel, Eq. 17.160 can be 
simplified to 

q,(E,Er) .: (for E, < E) (17.161) 
r 

}Vhen the PKA energy is less than E,, the slowing-down 
density is 

ql(E,Er)=O (for E, > E) (17.162) 

Equation 17.162 applies to a unit volumetric source of 
PKAs all of energy E. Fission-fragment bombardment of 
the lattice, however, creates a PKA source with a distribu­
tion of energies. Let F(E[[,E) dE dEff be the rate at which 
PKAs in the energy range (E,dE) are created ~r unit 

volume and per unit time by fision fragments in the energy 
range (Ef f ,dEff). The slowing-down density to this dis­
tributed source is given by 

q, (E, E,) F(E[[,E) dEq(Er) = $;;;’”[[ jl’~,f()dE


where ,l’Eff is the maximum possible PKA energy due to 
collision of a lattice atom with a fission fragment of energy 

Eff. Using Eqs. 17.161 and 17.162 for q, (I~,E, ), we find 
that the slowing-down density is 

‘rhe slowing-down densily can be converted to the 
recoil-flux spectrum using the continuous slowing-down 
model commonly applied to similar problems in neutron 
thermaliation. ~’1 For hard-sphere collisions between like 
atoms, one of which is moving with energy E,, the av~rage 
energy loss per collision is Er/2. Therefore, in order to pass 
through an energy range dE,, dEr/(EJ/2) collisions per alom 
are needed, If q(h;r ) recoils cm “] sec 1 are passing through 

dE,, the number of collisions per cubic centimeter per 
second which occurs due to the recoils in the energ} range 

(E,,dEr) is 2q( E,) dE, /E,. On the other hand. the total 
collision density is also given by fJ[l. tJ(E,. ) NT(I <~(~r) dti,, 

where CJ,{.U( Kr) is the total cross sertion for scattering of 
stationary lattice atoms by lattice atoms moving with 
energy Er, Equating these two expressions for thv rollision 

density yields 

The source term in Eq. 17.163 is givt,n by Eq. 17.28: 

F(Eff,E) = N,, ;J(Elf) (jff. [l(Eff,E) (17.165) 

tvhert, lhe fission-fragment flux is given by Eq. 17 .lI 6 and 
the fission-fragment-uranium atom scattering (Lross section 

is of the Rutherford type given by Eq. 17.149. 
Substituting Eqs. 17.164 and 17.165 into 17.163 yields 

rll%l\


4 ~ff 
{}(E, ) = , J dEff O(Eff)

E; U(,. [,( E,) I.:,/\’ 

\’F:ff 

x E{~ff. [,( Eff,E)d E (17.166)
E*s


[nsert ing the appropriate expressions for 4( E;ff) and 
of f.u(Eff,E) and integrating giv~, 

47rFpff ZffZ~,e4 Mff 
@(E,) = 

E~;’i’E: [JL. U(E, ) (-)Mu 

x[in(=)]’ (~7,~6’7) 

Nelson takes a very rough approximation to the cross 
section ou. u(Er). He assumes that it is equal to the square 
of the lattice parameter of UOz (a,, = 5.47 :1): 

4 
ou. u(Er) = a,, 2– (17.168) 

Ntla,, 

The last equati~ in the above formula is derived from the 
relation between atom density and the fcc structure of the 
cation sublattice of Uf)2 (i.e., Nu = 4/a~ ). Using Eq, 
17.168 in 17.167, we find the recoil flux to be 
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(17.169)o(Er)=*[ln(’’y
i’)]’ 
where B is a constant:* 

Inserting numerical values into Eq. 17.170, we find 
B = 0.73 X 10-~ eV-cm. 

Substituting Eqs. 17.156 and 17.169 into Eq. 17.151 
and neglecting T,,,, n compared with ,\ ’E,, we find the 

microscopic re-solution parameter to be 

Using the values of the constants K and B found in Eqs. 
17,157 and 17.170 and assuming T,,,, n = 300,eV, we find 

that the above formula gives b = 1.7 x 10-17 F see-l This 
vafue is ‘-10 times larger than the re-solution parameter 
based on direct encounkrs between fission fragments and 
gas atoms in a bubble (Eq. 13.116). Note that the 
re-solution parameter given by Eq. 17.171 is veW sensitive 

to the value of T,,,,,, (which was just guessed by Nelson), 
does not consider the role of the oxygen sublattice in UOj 
at all, incorporates what appears to be a rather large cross 
section between uranium atoms in the cascade, and assumes 

a constant electronic stopping power. 

17.12 NOMENCLATURE 

a = screening radius 
a~ = Bohr radius of the hydrogen atom 
~, = lattice constant 
al = coefficients representing degree of nonisotropy 

of elastic neutron-scattering cross section 
,1 = constant given by Eq. 17.84; constant in potetl­

tial	 function; mass number 
b = re-solution parameter 
B = constant given by Eq. 17.170 

dpa	 = displacements per atom 
I) = bond energy; distance between atoms in a 

particular direction 
e = electronic charge 
E = kinetic energy of a particle 

E,.l	 = energy below which the hard-sphere model is 
valid 

E,. = energy below which ionization does not take 
place 

E,h	 = channeling energy 

E,l	 = displacement energy 
Ef = focusing energy 

*E(i~liiliotls 17.1 6$) :~nd 17.170 c:tn be (r:Irrs[{}rmed 
into N[>ls(Jn’.\ Eq, 9 by m;iking the substituti{)ms 

EI{v[I = t.2 1(2:111):Ind @f = 2~pff, The [titter is obtained by 
integr:iting Kq. 17.1.16 over () < Eff < E~:i X. 

E, = energy of bombarding ion 
E,, = neutron energy 

E – energy below which a moving atom cannot beneut — 

ionized by collision with electrons in the solid 

E, = relative kinetic ener~ of two particles in a 
head-on collision; energy of a recoil atom; 
maximum energy for replacement during a 
focused collision chain 

dE/dx = stopping power 
LE~,,b = energy of sublimation 

F = collision density 
F = fissions cm-] sec”[ 

F, = force on lattice atom i 
g = relative speed of two particles in head-on 

collision 
G, = damage function for property i 

t] = Planck’s constant divided by 27r 
1 = particle current; binding energy of an electron 

in the solid 
k =	 force constant in a parabolic potential; Boltz­

mann’s constant; constant in Lindhard’s stop­
ping power formula, Eq. 17.53a 

K = constant given by Eq. 17.157 
KE = total kinetic ener~ of two particles 

1 = average path length between collisions 
lIJ = average path length between displacement colli­

sions 
\l = particle mass 

m,, = electronic mass 
N = density of target particles 

n~, = density of electrons in a solid capable of 
absorbing energy from a moving particle 

p = probability of enerw transfer 
P = probability of channeling or focusing 

P,l = displacement probability 
Pf = focusing probability 
PI = Legendre polynomial 
P, = mechanical or dimensional property of a solid 

PK,I = prima~ knock-on atom

q = slowing-down density


Q = excitation ene~y of nucleus

r = separation distance


r = hard-sphere radius


RC~~= radius of a channel

R,l = displacement rate per unit volume in a neutron 

flux 
R(l X = rate of collisions between recoils and gas atoms 

in bubble which result in re-solution 
Rr, = projected range of particle 

RL(,t = total range of particle 
s = exponent in the inverse-power potential; en­

tropy of motion 
t = time 

t,. = collision time 
T = temperature, ‘K; kinetic ener~ transferred to 

struck ~rticle 
T,,,=maximum kinetic ener~ transferable to a 

struck particle 
u = particle velocity in center-of-mass coordinates 

U = energy per atom in a solid 
v = volume per atom in a solid; particle speed in 

laboratory conditions 
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x 

Vc ,n = speed of the center of max of a two-particle 
system 

~/ = velocity of channeled particle along the channel 
axis 

V(r) = potential energy between two particles that are 
a distance r apart 

VC1,(r) = channel potentiaJ 
w = jump frequency 
x = path length 

Ill = distance of closest approach in a head-on 
collision 

y = dimensionless ene%y variable, Eq. 17.82 
Y,, = yield of Frenkel pairs per fission


z = channel axis

Z = atomic number


Grcetz letters 

U = compressibility 

c = migration energy; reduced energy in Lindhard’s 
model


C* = energy of atom at saddle point


Cr<, = energy of atom in equilibrium ~sition in lattice 

~ = force constant of the channel potential 
A = wavelength of particle trajectory in channeli 

parameter in the screening radius formula, Eq. 
17.35


\ = mass-number group, Eq. 17.8


H = reduced mass, tiq. 17.14

Lff = fissit)t)-fr:igtl](,llt range in a solid


v = number of displaced atoms per PK,\

dfl = differential solid-angle element


o(E) = differential energy flux

f~~,,@z = scattering angles in laboratory coordinates 

~11==total partich> flux 
p = constant in the BtJrn-}Iayer potentiaJ function 

(J(E) = total atomic collision cross section 

CJ(E,rr ) = differential energy-transfer cross section 

O( E,O ) = differential angular cross section 

fJ,i(~,l) = displacement cross section for neutrons of 
energy E,, 

u~l(E) = cross section for energy transfers between Ed 
and E 

(Jl,( E,,,E) = differential energy-transfer cross section for 
neutron scattering 

O = scattering angle in center-of-mass coordinates 
0,, = recoil angle in focused collision chain 
0~ = maximum angle for which focusing is possible 

~~c,x = maximum injection angle into a channel 
~ = fraction of PKA energy lost by electronic 

Excitation during slowing down 

S[if]scripls 

a = lattice atom 
e = electron


el = elastic scattering

eq = at equilibrium


f = final state (after collision)


ff = fission fragment

g - fission gas

i = interstitial


in	 = ine[ast ic scattering 

()	 = oxygen 

U = uranium

v = vacancy

1 = particle one

2 = particle two

O = initial state (before collision)
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17.14 PROBLEMS 

17.1 12igure 15.6 s l ~ o w s  a portion of  a fission-fragment 
tracbk in [lo2. o n e  point,  tht, track changes dirtsction 
slig11tly. which indicates that  the  fragment has madr  a 
Rutherford collision with a latticvc. a tom at t l i s  point.  The 
fragment. which may he assumed t o  havt. a birth c,ncrgy of 
100 MeV, a n  a lomic  n~1mbt.r of 42. and a mass rlumbrr of 
100 ,  has t ravolled 2 y m bt.fori3 undtbrgoing t tit. t,ollision. 

(a) What is t h e  t,ffrc,tivr ctiargt' of  the fragment at 
birth? 

( h )  Prior l o  the  Ilutherford collision. t.he fission frag- 
ment lo.ws energy by electronic esc i ta t ion according t o  the  
Bethe formula.  Calculate the  fragment c3nc1rgy a t  the  point 
of tht, Hutherford collision. Assume thc. mean rxt,itation 
t1nergy in the Br lhr  formula is I - 8.8% ( e V ) .  

( c )  If the  scatlclring angle o n  the photograph is 5 . 
calculatt> the  energy transferred to  the  struck lattice a tom 
( I )  if t h e  latter i soxygen and ( 2 )  if t he lattt>r is uranium. 

17.2 1)erlve Ihe diffc~rclntlal angular rn)s\ section for 
Ruther  ford scattering f rom the  d if fe rent~al  energy-tran5fcr 
cross section ( E q .  17.37) .  

17.3 It is desired t o  join the  screened Coulomb polential 
t o  the  inverse power polential in which the  constants  A and  
s are  known.  T h e  matching point (i.e., t he  energy E:': above 
which the screened C o u l o ~ n b  potential is used and below 
which t h e  inverse power potential is applicable) is deter- 
mined by the  criterion that  t he  distance o f  closest approach 
in a head-on collision is the  same when computed b y  both  
polential functions. Derive the  equat ion f rom which E:': can 
be  calculaled. 

17.4 The  simple bond  theory of lattice cohesion is used t o  
calculate the  displacement threshold in tanta lum for a 
knock-on moving in the direction shown in t h e  sketch. The  
repulsive potential between lattice a toms  is approximated 
by the  harmonic-force law. 

(a) If the energy o f  sublimation o f  t a n l a l u ~ n  is 8 . 1  r V .  
what is t he  bond strength D'? 

(h)  If tht, (soefficient of compressibility of tantalum is 
0 . 5 3  x 1 0  c ~ n ' / d y n ~  and the  dt,nsity of  tantalum is 16.6 
glcm ' .  what is t.hth product of  the  force constant k and the  
squartl of  1 htl 1at.t ic,t. parameter? 

(c) \+'hat are the Miller indices of t he  P K A  dirclction 
shown in the  skctch'! 

(d).At what point along lhis direcbtion is tht. P K A  
potential energy a maximum'? Calculate t h e  d i f f e r e n c ~  
between tl~r.  P K A  energy at  this saddle point and the  tlnrrgy 
in t hc t>quilibrium ( la t t ice)  si te.  This polential-twergy 
diffrrc,nce is id(an1ific.d with thtl displact.ment energy E,, for 
this direcst ion 

(e) ' l 'ho loc,atit)n 1narkt.d wit11 an X in the  sketch is an 
t)ctahrdral intcbrslitial site in t h e  bcc lattice. What is tht. 
cAncrg\ of  tht, P K A  when it rclaches this p ~ s i t i o n ' ?  

(f) Sketch ( b u t  d o  not compute )  the variation of  tht1 
PKl \  poltsntial energ). a s  i t  moves along the  specificd 
direclion. 

17.5 Energy losst>s t o  the  ring of  a toms surrounding t h e  
focusing dirt%(-tion p r o ~ i d e  a mtvhanism for twminating a 
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focused collision sequence. Consider a (1 10) focusing 
sequence in the fcc lattice. in the sketch the atom Al is 
struck and moves off in th~ direction of A? Along this 
path it must pass through the ring of atoms Iabel(>d B. 

(a) Calculate the B–A, distance when collision of Al 
and A: occurs. No~e that Al , Aj , and a B atom lie on a 
close-packed ( 111 ) plane. Assume that the equivalent 
hard-sphere diameter based on the Born–hlayer potential 

(2ro) is smaller than the interatomic distance along the 
chain (l)). Express r,, in terms of the enetgy of Al (denoted 
by E) and 1) in terms of the focusing energy Ef. 

(b) Calculate the increase in the four A, –B interaction 
energies as Al movps from its initial position to lhe 
collision ~Jint. 

(c) The total of A, –B interaction energy calculated in 
(b) is lost to the focused collision sequence (this energy 
appears as thermal energy in the lattice when the four B 
atoms and Al relax and lhen oscillate about their equilib­
rium positions). How many collisions can a dynamic 
crowd ion of initial energy El < Ef encounter along the 
(110) direction before it stops? 

17.6 A 30-ke V ion enters a channel in the solid lattice and 
loses en?rgy only by electronic excitation. (Ising th[, 
Lindhard stopping-power fortnula, determine tht, distance 
travelled by the ion before it is rechanneled, The minimum 
channeling energy is equal to 300 eV. 

17.7 ‘rho (o,y) reav( ion in <” Fe releases a prompt gamtna

ray of El -7 hlev.


(a) }Vhat is the recoil energy of the <7 Fe product

nucleus’?


(b) Use the Lindhard model to determine the number 
of displaced atoms per s 7 Fe recoil. Compare this result 
with that obtained by the Kinchitl-Pease formula. Assume 
E,l = 25e V. 

(c) If the thermal compnent of the neutron flux in a 
fast reactor is 101 ‘ neutrons cm ~ sec 1. what is the 

damage production rate (i.e., displacements cm { sec 1) due 
to the (0,7) reaction in $“ Fe’? 

(d) [fthe fast flux is given by 

(j f( Ii,,) = 10’5(5(E,,— 0.5) (E,, in MeV) 

what is the damage production rate due to the fast flux in 
iron’? Assume that scattering of 0.5-hle fromV neutrons 
iron is elastic and isotropic in the centerof-mass system. 

Use the Kinchin–Pease displacement formula in (c) and 
(d) and look up thp necessary neutron-cross-section data. 

17.8 For a monoenergetic fast-neutron flux of energy 0.5 
MeV, calculate the number of displacements per atom 
(dpa) in iron at a fast-neutron fluence of 10Z 2 neutrons/ 
cm~. 

17.9 Calculate the average iron PKA energy in a fission-
neutron spectrum: 

f!J(El, ) = constant X e~p (—E,, ) sinh (2 E,, )[Z 

where E,, is the neutron energy in MeV. How does this 
value mmpare with the approximation of calculating the 

average PK,I energy due to collision \vith the neutr(}n of 
average energy’? Assume isotropic, elastic scattering and an 
t~l]{,rgj -illd(,p[,l~d(,t~t scattering cross section. 

17.10 Calculate the numbt,r of atoms displaced by a 
14-hleV neutron incident on the stainless-sleel first wall of 
a fusion reactor. timpare this result with lhe number of 
displacements produced by a 0.5-h!e V neutron. which is the 
average neutron energy in an L\l FBft. obtain displacement 

cross sections from Fig. 17.17. 

17.11 only relatively energetic electrons are capable of 
causing atomic displacements in metals. For electrons in the 
million electron volt range, relativistic kinematics of the 
collision process must be employed. The (,nprgy transferred 
to a stationa W atom of mass N1and atomic number Z by an 
electron of ene~y E,, is 

where m,, is the mass of the electron, () is the (enter-of-mass 
scattering angle and all energies are expressed in hle V, 

The int(,raction leading 10 displac(~ment is nuclear 
Rutherford scattering between the electron and the un­
screened nucleus of the atom. The differ(>ntial energv ­

transfer cross section for this process is gi~eo by 

%Tev 

where ~ is tht, ratio of the t,l~ct,ron speed to th~, speed of 
light and the electron energy is 

(in all the above formulas, the electron rest mass is taken as 
0.5 MeV instead of the accurate value of 0.51 MeV). 

(a) I)etermine the minimum electron energy, E~””, 
required to produce displacements in a metal for which the 
displacement threshold is E,l. 

(b) If an electron of energy E: > E:’” is injected into 
or is born in the metal and deposits all its energy there, 

determine lhe total number of displacements per electron 
n(E,, ). Consider the process as one of occasional electron— 
atom collisions between which the electron loses energy by 
radiation (bremsstrahlung) and by interaction with the 
other electrons of the medium. The total stopping ~wer 
(d E(, /dx),, due to these two processes is nearly energy 
independent for 0.2< E,. < 3 MeV (Ref. 2, p. 161). To 
determine the number of displaced atoms, begin by 
formulating the probability y pcl( E,. ,T ) dT = average number 
of displacement collisions per unit energy loss which 
produces PKAs in (T,dT). 

(c) For the limiting case of E: just slightly larger than 
E~’ ‘“, obtain an analytical solution to (b). 

17.12 It is desired to calculate the rate of atom displace­
ments in a medium that is subject to a gamma-ray flux of 



known spectrum. AI] darnage can be assumed due to the 
Compton electrons produced by the interaction of the 
gamma rays with the electrons in the solid. The Compton 
electrons are produced with a spectrum of energies: assume 
that the number of displaced atoms produced by a single 
Compton electron of energy E, is known. 

The following quantities can be considered known: 
N = the total atom density of the solid 

hl = the mass of an atom in the solid 

E,, = the minimum energy that an atom must 
receive to be displaced, eV 

=the energy spectrum of the gamma-ray 
flux in the medium; the maximum photon 
energy of the spectrum is E; 

the differential (’ross section for produc­
tion of (<ompton electrons \vitll (’nerg} in 
the range K to E,. + dE, by photons Of 
energ~’ E7 (i.e. the Kleill-Nisllina t’or­
mula) 

n(E,, )	 the number of displa[ed atoms produced 
by an electron of energy E,.. 

(a) I)erive an integral expression for It,,, the number of 
displaced atoms cm i SPC 1; pay careful attention to the 
limits of integration. 

(b) \Vhat is the minimum valu~ of E; at which damage 

can occur? 

17.13 In the fuel, fast neutrons, as well as fission 
fragments and recoils, can cause re-solution of fission-gas 
bubbles. JVhat is the re-solution parameter b for a known 
fast-neutron-flux spectrum, O( En )? 

lletermine b for a monoenergetic fast flux of 1015 
neutrons cm ~ sec 1 at E,, = 0.5 lle V and an elastic 
scattering cross section that is iwtropic and equal to 10 
barns. For this fast flux, calculate th~ fission density in a 
mixed-oxide fuel containing 15c’~plutonium (see Chap. 10). 
It is shown in Sec. 17.11 that b for fission-fragment recoils 
isl.7X10]7 F. Compare re-solution by fast neutrons with 
that by fission-fragment recoils. 

17.14 Helium atoms contained in helium bubbles that 
have precipitated in stainlesss-steel cladding can be redis­
mlved by energetic collisions with fast neutrons or with 
recoil metal atoms. Calculate the re-sol ut io n parameter b 
for the processes due to: 

(a) [)irect collisions of fast neutrons with helium atoms. 
(b) Collisions of helium atoms in the bubble with recoil 

atoms (assumed to be iron ) produced in the collision 
cascade. 

Use the following property values. Elastic-neutron­
wattering cross sections: helium, 1 barn; iron, 3 barns. 
Irotl–iron atomic cross section, 5 ,12. Fast-neutron flux 

(assume monoenergetic with El, = 0.5 h!e V, (I) = 101 s 
neutrons rm”~ sef 1). Nfinimurn helium-atom energy for 
re-solution, 200 PV. 




