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17.8.4 Effect of Focusing and Channeling on
the Number of Displaced Atoms

If in the course of formation of a cascade a recoil
becomes channeled or develops into a dynamic crowdion,
the kinetic energy of the recoil is lost to the cascade; i.e., its
energy is transformed to heat through electronic stopping
or subthreshold atomic collisions. The probability of the
occurrence of a crystal effect is a function of recoil energy.
The notation P(E) is used for either of the probabilities P;
or P.,. However, the effect of focused collision sequences
on the displacement cascade is quite small owing to the
upper energy limit E; of ~100 eV in the focusing process.

The basic integral equation governing cascade formation
can be modified to account for crystal effects by amending
Eq. 17.65 to
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The first term on the right represents the lone displaced
atom (i.e., the PKA itself) which results if the PKA is
channeled or focused on its first collision. The second term,
which is weighted with the probability 1 — P(E), gives the
number of displacements created by a PKA that makes an
ordinary displacing f{irst collision. This equation can be
solved by the method used in the previous section if the
probability P is assumed to be independent of energy.
Taking the derivative of Eq. 17.111 with respect to E then
yields

dv
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which can be integrated to give
CE(I 2Py P
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The integration constant C can be found by substituling
this solution into Eq. 17.111:
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The complete solution is therefore
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(17.112)

Equation 17.112 was first obtained by Oen and
Robinson.'® Equation 17.112 reduces to the Kinchin—
Pease result (Eq. 17.68) when P=0. The crystal effect
(principally channeling) is most important for large PKA
energies, which simply reflects the greater number of recoils
susceptible to loss from the cascade by this means. For
P =177, for example, a 10-keV PKA in iron produces 100
displaced atoms according to Eq. 17.112. When channeling
is neglected, twice this number is generated.

17.9 DISPLACEMENTS AND DAMAGE IN
A FAST-NEUTRON FLUX

Up until this point we have been concerned with the
methods of calculating v(E), the number of displaced atoms

produced by a single PKA that receives energy E from a
collision with the bombarding particle. In this section the
supply of energy to the atoms of a metal from fast neutrons
is coupled with cascade theory to permit calculation of the
rate at which vacancies and interstitials are produced in a
specified neutron flux spectrum. No account is taken of the
reduction in the number of displacements due to recombi-
nation within the volume of the cascade.

Let u,(E,,E) dE be the differential energy-transfer
cross section for the production of PKAs with energies in
(E.dE) due to neutrons of energy E,,. Each PKA goes on to
produce v(E) displaced atoms. If the differential neutron
flux is &(E ), the rate at which atoms are displaced is

4 Ak
er =N f dEn O(En’ f
Eq/A :

Eg
displaced atoms

X v, (E,.E) V(E) dE em? fsec
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The energy-transfer parameter, A, is given by Eq. 17.8,
which, for the case of neutrons, can be written

4A

e (17.114)

where A is the mass number of the lattice atom in atomic
mass units. The upper limit on the inner integral of
Eq. 17.113 is the maximum-energy PKA that can be
produced by a neutron of energy E, , and the lower limit on
the outer integral is the minimum neutron energy that
produces a PKA of energy E,. Neutrons of energies less
than E; /A (which is about 200 eV for the major constitu-
ents of stainless steel) create no displacements by elastic
collisions with the nuclei of lattice atoms.

Therefore, thermal neutrons (mean energy ~0.1 eV) are
incapable of causing damage to structural or cladding
metals by direct collision energy transfer. However, thermal
neutrons can cause displacements by becoming absorbed in
a nucleus and producing a radioactive species thal decays
by emission of a high-energy gamma ray. The decay-
product atom recoils from this event with sufficient energy
to displace itself and perhaps a few other lattice atoms. We
do nol treat this process here, inasmuch as the scattering
collisions between lattice atoms and energetic neutrons are
far more important in fast reactors than is the damage
caused by capture reactions involving slow neutrons.
Problem 17.7 at the end of the chapter deals with the recoil
energy of lattice atoms that become radioactive by virtue of
neutron capture.

17.9.1 Displacement Cross Section

Equation 17.113 can be written in terms of the
displacement cross section:

R, = Nf:d/”\ 64(Ey) ¢(E,)dE,  (17.115)

where g is

Ak,
Ud(En)=fF 0, (E,.E)»(E)dE  (17.116)
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The displacement cross section can be computed if the

nuclear scattering cross section for neutrons with the
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element comprising the lattice is known. As mentioned
above, v(E) must be known as well. Graphs giving 04 as a
function of neutron energy can then be constructed for
each nuclide (isotopes included) contained in an alloy such
as steel or zircaloy. This graphical information can then be
combined with the neutron-flux spectrum characteristic of
the particular location in the reactor in which irradiation
occurs in the same manner prescribed by Eq. 17.115. In
this way the results of experiments conducted in one flux
spectrum can be used to estimate material behavior in a
reactor with a different neutron-flux spectrum.

The scattering of fast neutrons by the nucleus of a
lattice atom can be elastic or inelastic. In elastic scattering
the nucleus of the struck atom is not excited to a higher
energy state as a result of the collision; kinetic energy is
conserved in the scattering event. In inelastic scattering the
nucleus recoils from the collision in an excited state. The
excitation energy, Q, is provided at the expense of the
kinetic energies of the scattered neutron and the recoiling
nucleus; total energy rather than kinetic energy is conserved
in the collision. Inelastic scattering becomes important
when the neutron energy becomes just a bit larger than the
excitation energy, Q. When E, < Q, inelastic scattering is
energetically impossible. The lowest excited state of the
nucleus generally has an energy of ~1 MeV above the
ground-state energy.

In inelastic scattering, one neutron is ejected from the
nucleus for each neutron absorbed. At higher neutron
energies the nucleus may be left in such a highly excited
state as a result of momentarily absorbing the bombarding
neutron that two neutrons are emitted in the decay of the
compound nucleus. This interaction is the (n,2n) reaction.
Because the flux of fast reactors is low at the threshold
energies of the (n,2n) reaction, the contribution of this
reaction to damage is smaller than elastic or inelastic
neutron scattering.

Neutron scattering can also be characterized as isotropic
or anisotropic. In inelastic scattering the incident neutron
is first absorbed by the nucleus, and the scattered neutron
is in reality emitted a very short time later from the
compound nucleus. Because absorption precedes reemission
of the neutron, the angular distribution of the inelastically
scattered neutrons is to a very good approximation iso-
tropic in the center-of-mass system.

Below about 0.1 MeV, elastic neutron scattering is also
isotropic in the center-of-mass system. At higher energies,
however, the elastically scattered neutrons have a distinct
forward bias. This phenomenon is known as p-wave
scattering.

To explicitly account for elastic and inelastic neutron
scattering, we can write Eq. 17.116 as
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where o, (E,.E}) and 0;,(E,,E) are the differential
energy-transfer cross sections for elastic and inelastic
neutron scattering, respectively, and E,;, and E . are
the limiting recoil energies in the inelastic-scattering
process. Equation 17.117 can also be written in terms of

the differential angular cross sections for the scattering
reactions by use of the first equality in Eq. 17.22:
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The angular dependence of the elastic-scattering cross
section can be written in a series of Legendre polynomials:

O (Ep0) = 1‘“4(;—“—) 2 a{E,) P (cos0) (17.119)

1=0

where 0,,(E,) is the total elastic-scattering cross section
for a neutron energy E, , P, is the Ith Legendre polynomial,
and values of a; are the energy-dependent coefficients of
the cross-section expansion. At the neutron energies en-
countered in fast reactors, it is sufficient to retain only the
[=0 and | = 1 terms in the series expansion of Eq. 17.119,
Since Py = 1 and P, = cos 0, we can write

U(xl(En.oi=g‘f{15TEL)|1+a](En)COSO] (17.120)

where ay has been set equal to unity for normalization and
a, (E,) represents the degree of anisotropy of the elastic-
scattering reaction. If a, = 0, the differential cross section
for isotropic elastic scattering is recovered.

When scattering is elastic, the angle—energy transforma-
tion derivative is given by Eq. 17.9 with T and E replaced
by E and E,,, respectively:

2
=2 17.121
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Equation 17.121 is valid for both isotropic and anisotropic
elastic scattering.

Since inelastic scattering is isotropic in the center-of-
mass system, 0;, (E,,,0) simplifies to

Oin(Enso) = &n(l_‘:_n_)

(17.122
4n )

where u;, (E,) is the total inelastic-scattering cross section.

The inelastic-scattering process can excite the struck
nucleus to a number of discrete levels having energies Q;
above the ground state or to a continuum of levels at high
energies. For simplicity, we treat here the case in which
only a single discrete state with excitation energy Q is
produced.

Because the recoiling nucleus has absorbed energy in
the collision, the elastic-scattering formula relating energy
transferred to scattering angle, Eq. 17.9, is no longer valid.
Instead, the collision kinematics must be based on conserva-
tion of total (rather than kinetic) energy, which results in
addition of a term Q to the right-hand side of Eq. 17.4. The
analog of Eq. 17.9 for an inelastic collision wherein the
struck nucleus retains an energy Q is
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which reduces to Eq. 17.9 if Q = 0. The maximum and
minimum recoil energies are obtained by setting cos § equal
to —1 and 1, respectively:

1., . 1+AQ
Emax = 5"\E‘n [1 - 2A E’
n
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—\1—— = 17.125
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The threshold energy for production of the excited state is
given by the requirement that the term under the square-
root sign be greater than zero, or

1+
(En)min = 7?‘_

Q (17.126)
where 0;,(E,) is zero for E, < (E ) min-

The transformation from scattering angle to energy
transfer is

d(cos )
dE
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Substituting Eqs. 17.120, 17.121, 17.122, and 17.127 into
17.118 yields
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If more than one excited state contributes to the inelastic
scattering process, the last term in Eq. 17.128 is replaced
by a sum over the excited states, each with its particular
Jins Q’ Emax- and Emin'

To proceed further, we must specify r(E). A simple
result can be obtained by using the Kinchin—Pease expres-
sion for v(E). Substituting Eq. 17.68 into Eq. 17.128 and
neglecting E4; compared to AE,, in the first integral results
in

\E,, 1
0g(E,) = (/4E ){oo.(}a,]» [1 ~ga(E, )]
d

+”in(En){ _u'ég’ } (17.129)
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We have assumed for illustrative purposes that the maxi-
mum PKA energy AE, isless than the ionization limit given
by Eq. 17.43.

Except for resonances, the elastic-scattering cross sec-
tion, 0., (E,), is more or less constant with neutron energy.
The inelastic-scattering cross section, . however, sharply
increases with energy above the threshold (E,)ni,. The
anisotropy factor a,(E,) tends to decrease the displace-
ment cross section because forward scattering transfers less
energy, on the average, than does isotropic scattering. If
both inelastic scattering and anisotropic elastic scattering
are neglected and the elastic-scattering cross section is
assumed to be energy independent, Eq. 17.129 reduces to

04(E,) = (‘J\E") Ter
4E,

In this simplest of cases, the displacement cross section
increases linearly with neutron energy.

Inasmuch as AE, /2 is the average energy transferred to
the lattice atom by a neutron of energy E,, the coefficient
AE,/4E, is the average number of displacements produced
by a neutron of energy E,. For 0.5-MeV neutrons in iron
(A =56), the displacement cross section is ~35Q0 times
larger than the nuclear scattering cross section. The total
displacement rate for this case can be obtained by inserting
Eg. 17.130 into Eq. 17.115:

(17.130)
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where En is the average neutron energy and & is the total
neutron flux (with energies above E4/A). For the condi-
tions

(17.131)

N =0.85 x 10*" atoms/em?

U1 = 3 barns
&> = 10" neutrons em* sec¢ !
/\En . . [
AR, 350 displaced atoms/neutron collision
d

we find that Ry is 9x 10'" displaced atoms ¢m* sec” .
Or, dividing by N, the displacement rate per atom (dpa/sec)
is ~10™; each alom in the metal is displaced from a normal
lattice site once every 12 days.

Although Eq. 17.130 is useful for illustrating the order
of magnitude of the displacement cross section, it is not
sufficiently accurate for predicting mechanical-property
behavior under irradiation. Doran'” and Piercy®" have
calculated displacement cross sections for stainless steel and
zirconium, respectively, using the Lindhard model for v(E)
(Egs. 17.90 to 17.93) and available data on the energy
dependence of the elastic- and inelastic-scattering cross
sections and the anisotropy parameter a, (E, ). Figure 17.17
shows the displacement cross section for stainless steel. The
Jagged appearance of the curves is due to resonances in the
elastic scattering cross section.

Figure 17.18 shows the differential neutron-flux spectra
in two fast reactors and one thermal reactor. The average
neutron energy in the all-metal Experimental Breeder
Reactor 1T (EBR-II) core is 0.85 MeV. In the mixed-oxide
Fast Test Reactor (FTR) core, the average neutron energy
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Fig. 17.17 Displacement cross section for stainless steel.
(After Ref. 19.)
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Fig. 17.18 Comparison of neutron-flux spectra for three
reactors (FTR, Fast Test Reactor; EBR-II, Experimental
Breeder Reactor II; ETR, Engineering Test Reactor). The
FTR and EBR-II are fast reactors; the ETR is a thermal
reactor. The fission-neutron-energy spectrum is shown for
comparison. (After W.N. McElroy and R.E. Dahl, Jr,,
ASTM Special Technical Publication No. 484, p. 375,
American Society for Testing and Materials, 1970.)

is 0.45MeV. The fission neutron spectrum (average
energy = 1 MeV) is shown for comparison. To compute the
displacement rate in stainless steel, we multiply the curve of
Fig. 17.17 by one of the spectra in Fig. 17.18 and integrate
the product according to Eq. 17.115.

17.9.2 Damage Functions

The ultimate objective of calculating Ry is to permit
prediction of the extent of a particular mechanical-property
change in a fast reactor from the results of experiments
conducted in irradiation facilities that have considerably
different neutron-flux spectra. Typical mechanical-property
changes induced by fast-neutron irradiation are the yield
strength, the ductile-to-brittle transition temperature, and
swelling. It is by no means generally true that the change in
any of these properties is proportional to the number of

displaced atoms produced by an irradiation of known
duration. Although the extent of void formation in metals
appears to depend primarily on the number of vacancy—
interstitial pairs created by irradiation, mechanical proper-
Lies such as yield strength are determined by the clusters of
vacancies and interstitial loops that remain after the nascent
cascade has annealed and the isolated vacancies and
interstitials have disappeared at the various sinks in the
solid. The proper theoretical approach in the latter case is
to compute the production of stable point-defect clusters
resulting from radiation, not the total number of displaced
atoms. This can be accomplished by replacing »(E) in
Eq. 17.116 with the number of clusters that are produced
by a PKA of energy E, which may be estimated from
computer simulations of radiation damage. The resulting
rate of cluster formation, R j,eier. Should be a better
measure of the damage (i.e., the yield-strength change) than
is the rate of formation of total displaced atoms, Ry.
Calculations of this sort have been performed by Russcher
and Dahl.?'

These completely theoretical attempts to predict some
microscopic property of radiation damage (e.g., rate of
formation of displaced atoms or rate of formation of
clusters) are not sufficient to correlate macroscopic prop-
erty changes in reactors of different flux spectra primarily
because other consequences of irradiation besides the
number of displacements or clusters affect the macroscopic
property in question. Thus, although void formation
certainly depends on the rate of production of vacancies
and interstitial atoms by radiation, it is also a function of
the quantity of helium gas generated by (n.x) reactions in
the metal because helium appears to be necessary to
stabilize embryo voids. Calculation of the displacement rate
R4, no matter how accurate, provides no information on
the helium-production rate.

Because of the inability of displacement calculations to
cope with the complexily of most macroscopic radiation
effects, a semiempirical method, known as the damage
funclion method, has evolved.?? In this method the rate of
displaced-atom production appearing on the left-hand side
of Eq. 17.115 is replaced by the change in a particular
macroscopic property in a time t of irradiation, and the
displacement cross section on the right is eliminated in
favor of a function G(E,), which is to be determined. The
damage function for the particular mechanical property is
G(E,). Thus, Eq. 17.115 is replaced by

I Gi(Eq) ¢(Eq) dE,

AP, =t 21 (17.132)
o ¢(Ep) dE,

In this equation, AP; represents the change in the property

labeled by the index i during an irradiation of time t in a

neutron flux &. The spectrum of the flux in the irradiation

facility is ¢(E,). The equation has been multiplied and
divided by the total neutron flux

(l)zf” H(Eq) dE, (17.133)

so the ratio ME,)//O(E,) dE, is a normalized fiux
spectrum. The product &t 1s ihe total neutron fluence.

The term G;{(E,) is the damage function for property i

for neutrons of energy E, . The conditions under which the
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property P; is measured after irradiation and the conditions
(exclusive of the neutron flux) during irradiation must be
carefully specified. The damage function depends on these
nonneutronic conditions. For instance, if P; is the yield
strength of a particular metal, the temperature at which the
irradiation and the subsequent mechanical test are carried
out must be known. The derived damage function may
change if either of these two auxiliary conditions is altered.

The technique for obtaining G;(E,) is to measure AP; in
as many different (but known) neutron-flux spectra as
possible. One then attempts to deduce a single function
G;{(E,) from the data obtained in each irradiation by using
equations of the form given by Eq. 17.132. This process is
called damage-function unfolding. Deduction of G{E,)
from a set of measured AP; values in different neutron-flux
spectra is analogous to the determination of the flux
spectrum of a reactor by activation of foils of a number of
neutron absorbers of different energy-dependent capture
cross sections. The damage function is determined by
iterative solution of the set of equations given by
Eq. 17.132; a first guess of G;(E,,) is inserted into the set of
integrals, and the calculated property changes AP, are
compared with the measured values. The function G(E,)) is
then adjusted, and the calculation is repeated until the
measured property changes are reproduced as closely as
possible by the integrals on the right of Eq. 17.132.

In this process both the number of iterations required
and even the accuracy of the damage function ultimately
obtained depend on the availability of a good first guess of
the damage function. The best initial estimate of G,(E,) is
the displacement cross section u4(E; ) on the assumption
that the damage (i.e., the change in the mechanical
property in question) should be roughly proporlional to the
number of displaced atoms.

Figure 17.19(a) shows the damage functions for the
yield strength and swelling of stainless steel determined by
the method described above. The units of the damage
functions are those of the properly |yield strength in kilo
Newtons per square meter (kN/m?), swelling in percent(%)]
divided by the total neutron fluence (units of neutrons/
em?). Each damage function was determined from tests
conducted in several different reactors with different flux
spectra. The dashed lines in the graphs are the displacement
cross section of Fig. 17.17 extended to lower energies than
in Fig. 17.17. The increase of ¢4(E, } and G;(E,,) at neutron
energies below ~10™* MeV is due Lo damage produced by
recoil atoms activated by (n,y) reactions with slow neutrons
(the cross sections for capture reactions are proportional to
the inverse of the neuiron speed). Although the damage
funciion is appreciable at very low neutron energies, the
property change AP; is not greatly affected by this
low-energy tail of G;(E,,) because the flux spectrum of fast
reactors conlains relatively few low-energy neutrons
(Fig. 17.18). The insensitivity of damage to low-energy
neutrons is reflected by the breadth of the error band for
E, < 10® MeV in Fig. 17.19(a).

The yield-strength damage function is very close to the
displacement cross section used as the input first guess of
G;(E,). This accord implies that whatever features of the
displacement cascade are responsible for an increase in the
strength of irradiated steel are at least proportional to the
number of displaced atoms. The damage function deduced
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Fig. 17.19 Damage functions for two radiation effects in
304 stainless steel. (a) Yield strength for irradiation and test
temperatures of 480°C. [From R. L. Simmons et al., Nucl.
Technol., 16: 14 (1972).| (b) Swelling at 450°C [From
R. L. Simmons et al., Trans. Amer. Nucl. Soc., 15: 249
(1972). |

from the initial guess G;(E,) = constant is shown as the
dotted curve in Fig. 17.19(a). This curve is vastly different
from the damage function obtained with the aid of an input
displacemenl function, for which the initial guess is
Gi{(E,) @ 04(E,). The dotted curve is incorrect and reflects
the stringent requirement of a good first guess if the
iterative method is to converge to the correct damage
function.

Figure 17.19(b) shows the damage function obtained
for stainlesssteel swelling due to void formation. The
damage function for this property change is similar to, but
not identical Lo, that for the yield strength.

17.9.3 Damage Production by Ion Bombardment

The extent of radiation damage produced by exposure
of a structural metal to a fast-neutron flux depends on the
duration of irradiation. The damage increases with the
fast-neutron fluence, which is the product of the fast-
neutron flux, &, and the irradiation time, t. The economics
of nuclear power requires that the fuel of commercial fast
breeder reactors remain in service for a fluence in excess of
10?? neutrons/em? (i.e., for a year at a flux approaching
10'® neutrons em™@ sec’'). Accurate assessment of the
durability of structural metals for use in LMFBR cores
requires that the radiation effects produced at these
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fluences either be measured directly in an irradiation
facility where the expected fluences can be obtained or be
extrapolated from tests at much lower fluences by recourse
to an appropriate theoretical model. Acceptable theoretical
models are often not available for particular radiation
effects, and sound fuel-element design can be achieved only
by testing to the expected service fluences. This situation
applies to swelling of the cladding due to void formation;
no accurate theory is available for prediction of void
production, and extrapolation of low-fluence swelling data
is risky because the phenomenon is not linear with fluence.

Even if adequate irradiation facilities with a fast-
neutron flux of 10'® neutrons cm 2 sec” were available,
3-year-duration tests would be required to attain the design
fluences of an LMFBR core. In a test facility with a flux of
10'? neutrons em 2 sec', 30 years would be necessary.
There is therefore a great incentive to devise irradiation
tests that can simulate fast-neutron damage at fluences of
1023 neutrons/cm? in a reasonable amount of time (say of
the order of days).

Bombardment of metals by energetic heavy ions has
proven to be a useful tool for compressing the time scale of
irradiation tests by many orders of magnitude. Reasonable
currents of H', C’, and metal-ion beams of energies from 1
to 10 MeV can be obtained from accelerators. Because the
range of heavy ions in solids is quite small (typically 10
um), all the initial energy of the ion can be dissipated in a
small volume of the specimen. Since the number of
displaced atoms in an irradiation experiment is a reasonable
measure of the extent of radiation damage, we calculate the
rate at which a beam of energetic heavy ions causes lattice
displacements and compare this figure with that attainable
in fast-neutron irradiations.

Figure 17.20 shows some features of ion stopping in
solids. In Fig. 17.20(a) a beam of ions enters a solid target
with energy E;o. The ions slow down in the solid and come
to rest at a depth given by the projected range. Figure
17.20(b) shows the energy-loss characteristics of the ions
while traversing the solid. Because the incident energies are
in the million electron volt range, electronic excitation is
the principal energy-loss mechanism over most of the range.
Figure 17.20(c) shows schematic plots of the electronic and
atomic stopping powers as functions of ion energy. The
electronic stopping power is based on Eq. 17.52, and the
atomic stopping power is obtained by inserting the appro-
priate cross section for energy transfer from the ion to the
lattice atoms into Eq. 17.29. The ion energy at depth x can
be obtained by integrating the electronic stopping-power
formula of Eq. 17.52:

2

E(x) = [(Eio )t ——é-kx] (17.134)
The number of atomic collisions between the ions and
the lattice atoms at depth x can be calculated from the
following considerations. Let ¢(E;,E) dE be the differential
cross section for transferring energy in the range (EdE) to
lattice atoms by an ion of energy E;. The probability of a
collision between an ion and a lattice atom in dx which
transfers energy in the range (E, dE)is N o(E;,E) dE dx (see
Eq. 17.19). Since I ions/cm® pass depth x per second, the
number of collisions per second in the volume element of
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Fig. 17.20 Paths and energy losses of ions penetrating
solids.

unit cross-sectional area and thickness dx which transfer
energy in (EdE) to the atoms in this element is
NI o(E;,E)dEdx. Or, the number of collisions per unit
volume per unit time which transfer energy in (EdE) at
depth x is NI o(E;,E) dE. Now the number of displaced
atoms for each collision that produces a PKA of energy E is
v(E). Therefore, the rate of production of displaced atoms
at depth x is

AF;
Ry(x) = NI fEd '0(E;,E) »(E) dE

dlsplacgd atoms (17.135)

cm” -sec
where E; is given in terms of x by Eq. 17.134 and A is given
by Eq. 17.8. Multiplication of the above equation by the
irradiation time t and division by the lattice atom density N
gives the number of displacements per lattice atom in
irradiation of fluence 1It:

_ displacements AE;
dpa = atom *Itj;d JELE)yv(E)dE  (17.136)
Divisionof Eq. 17.136 by the fluence yields

d AE,
.—&z-at depth x = f o(E EY v(E) dE (17.137)
(ions/em~) Eq

A simple illustrative integration of the right-hand side of
Eq. 17.137 can be obtained if the cross section o(E;,E) is
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assumed to be given by the Rutherford formula and if the
Lindhard model is used for v(E). Substituting Eqs. 17.37
and 17.90 into Eq. 17.137 and assuming the coefficient
£(E) in Eq. 17.90 to be a constant equal to ~0.5, we obtain

dpa nZ2Z%e* (M, AE
- = — JIn{ — (17.138)
(ionsfem”)  4E4E; M Eq

where the subscript i denotes the incident ion and the
unsubscripted properties refer to the lattice atom. Eval-
uating the right-hand side of Eq. 17.138 for bombardment
of nickel by 20 MeV C' ions gives a damage rate at the
target surface (E; = Ejo) of ~3 x 10" * dpa/(ions/cm?).

Inasmuch as E; decreases with x, Eq. 17.138 shows that
the damage efficiency should increase until just before the
ion stops. Kulcinski et al.?® have used Eq. 17.137 to
determine the efficiency of displacement production by
various ion beams. Figure 17.21 shows graphs of the
displacement-damage effectiveness for various ions imping-
ing on nickel.
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Fig. 17.21 Displacement-damage effectiveness as a func-
tion of penetration depth for ions impinging on nickel.
(From Ref. 23.)

The amount of damage produced in a given time
depends on the intensity of the ion beam. For medium-
weight particles, such as H and C', intensities of the order
of 10'* jons em™ sec”' can be obtained from accelerators.
The maximum intensities of heavy-ion beams, such as Ni"
and Ta’, are roughly an order of magnitude smaller. Using
the maximum displacement rate for 20-MeV C' ions from
Fig. 17.21 and a C’ beam intensity of 10' * ions em * sec™
shows that up to ~4 x 10 dpajsec can be achieved. By
way of comparison, the calculated figure for a fast-neutron
flux of 10'® neutrons em™ sec ' based on Eq. 17.131 gives
a displacement rate of ~107® dpa/sec. The ion hom-

bardment is ~4000 times as effective as neutron bombard-
ment; the same number of displaced atoms are produced by
a 6-hr ion bombardment as are produced by a 3-year
neutron irradiation.

Ion bombardment is not simply a matter of telescoping
the time scale of damage production. Figure 17.21 shows
that the damage is contained within a very thin layer of the
specimen close to the surface and moreover varies by an
order of magnitude with depth. Fast-neutron damage, on
the other hand, occurs rather uniformly throughout the
entire volume of the metal. Such a variation in displacement
efficiency over the damaged zone in an ion-bombarded
metal is equivalent to a comparable variation in fluence in
neutron irradiation. Damage effects in ion bombardment
are contained in a narrow band between a free surface and
undamaged bulk solid at depths greater than the ion range.
The influence of the nearby free surface and the close
proximity of the highly damaged zone to undamaged metal
on radiation effects involving migration of the point defects
created by the collision cascades is difficult to assess.

17.10 COMPUTER SIMULATION OF
COLLISION CASCADES

Sections 17.7 and 17.8 of this chapter reviewed the
analytical methods of predicting the principal feature of a
collision cascade, namely, the number p(E) of displaced
atoms (and hence the number of vacancies) created by a
PKA of energy E. The simplest model due to Kinchin and
Pease was modified to account for

1. A realistic energy -transfer cross section.

2. Continuous electronic energy loss during cascade
formation.

3. Channeling of recoils.

Each of these factors reduces the predicted value of p(E) by
some 10 to 50%, depending on the PKA energy. All
analytical cascade theories, however, deal with the mechan-
ics by which a collection of isolated Frenkel pairs is created
by an energetic atom. That is, no interaction between the
vacancies and the interstitials or between point defects of
the same type was permitted. The former process leads to
mutual annihilation of Frenkel pairs and is accompanied by
a marked reduction in p(E). The latter process accounts for
the clustering of like point defects; these clusters are the
precursors of interstitial dislocation loops or embryonic
voids. Both of these entities exert a powerful influence on
the mechanical behavior of the irradiated metal.

Within the last decade the advent of large computers
has made possible the direct solution of the equations of
motion of a large enough collection of atoms (a crystallite)
to accurately simulate a macroscopic crystalline specimen
undergoing irradiation.’® ?° In these computer experi-
ments, one atom in a static assembly of several hundred to
several thousand atoms arranged in one of the cubic
structures (fcc or bee) is given an initial pulse of kinetic
energy in a particular direction. This initial state simulates a
lattice atom struck by a fast neutron and thereby trans-
formed into a PKA. The PKA goes on to strike one of the
neighboring atoms, which is set in motion (and displaced if
the energy transfer is great enough). The entire sequence of
collisions between atoms in the crystallite is followed as a
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function of time. The positions of all aloms in the
crysiallite during the cascade is governed by a sel of several
hundred equations of molion of the type

dx;

M F(X| Xa, ..

dl il xl])

(fori—=1,2,...n) (17.139)
where F; is the force on the ith atom due to the repulsive
interaction of its neighbors. These forces may be repre-
sented as the sum of the pair-interaction potentials between
the ith atom and the surrounding atoms:

av

- 1Jr
K&

F, =

where r; - [x; — x;} is the distance between the ith and jth
atom of time t. Since the repulsive force represented by the
gradient of the interaction potential V is short range, only
atoms in the immediate vicinity of the ith atom (nearest
and next-nearest neighbors) need be included in the above
sum. The polentialenergy function is of the form shown in
Fig. 17.5. Since typical kinetic energies of moving atoms in
the caseade are ~10 keV, potential functions of the
Born—Mayer type are most frequently used. As in analyt-
ical cascade theory, displacement is assumed to oecur if a
struck atom receives energy in excess of a step threshold Eg
(usually taken as 25 e V).

We first examine the results of computer simulations
for PKA energies elose to the displacement threshold.
Figure 17.22 shows the atom trajectories created by a
40-¢V knock-on in a small crystallite (about 500 atoms) of
copper. According to Eq. 17.64, only one Frenkel pair is
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created by a 40V PKA. The atom labelled A in the figure
is the PKA. The diagram represents a section through the
(100) plane, in which the atom positions are denoted by
large circles. The small dots represent the centers of the
atoms. The initial direction of the PKA in Fig.
17.22(a) lies in the (100) plane at an angle of 15" to the
[010] direction. Atom A strikes atom B with sufficient
energy transfer to displace B. After the collision, A falls
into the site vacated by B. This is called a replacement
collision. Atom B then goes on to dislodge C which,
however, does not have sufficient energy left to displace D.
The final positions of the atoms along the [010] direction
are marked with primes; a vacant site is left at the original
PK A position, atoms A and B occupy the former sites of B
and C, respectively, and atom C becomes an interstitial.
These movements constitute a miniature focused replace-
ment sequence of the type described in Sec. 17.8. The
remaining aloms in the crystallite receive subthreshold
increments of energy and simply oscillate about tiheir
cequilibrium positions. The wriggles about the initial atom
cenlers in the diagram show the motion of the atoms during
the cascade. Focused energy propagation is apparent in the
[011] direction, as expected, and to a lesser extent along
the [001] direction from atom A.

Figure 17.22(b) shows the same event with a change in
the takeoff direction of the PKA, which is 22.5" with
respect to the [010] direction. In this case the [011]
focused replacement chain is acilivated, and a dynamic
crowdion propagates in this direction. The displaced atom
appears at E’ at the end of the period of cascade formation.
Only focused energy transfer occurs in the [010] direction,
which in the previous case provided a displaced atom as
well. The vacancy is produced at A.

(b)

Fig. 17.22 Atom trajectories and displacements due to a 0.04-keV (40 eV) PKA in the (100) plane of
copper. The PKA was created at A. For two PKA takeoff directions: (a) 15" to [010]. (b) 22.5" to [010].

| After Gibson et al., Phys. Rev., 120: 1229 (1960

)1
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17.10.1 Displacement Spikes

In the preceding discussion of a near-threshold collision
cascade, the question of the spatial configuration of the
displaced atoms was trivial; only one Frenkel pair was
created, and, thanks to focusing, the vacancy and inter-
stitial were sufficiently separated to prevent annihilation by
spontaneous recombination. In collision cascades produced
by high-energy PKAs, however, many Frenkel pairs are
created, and their relative positions are crucial in deter-
mining the number of them that survive annihilation or
immobilization by clustering.

The question of the configuration of the displaced
atoms and vacancies in a collision cascade was investigated
analytically by Brinkman’’ before large computers were
available to describe the cascade in atomic detail. Brinkman
calculated the mean free path of an energetic recoil in the
lattice and found that when E was of the order of several
tens of Kkiloelectron volts the spacing between successive
collisions approached atomic separation distances. This
means that every atom in the path of the primary is
displaced and the cascade cannot be thought of as a
collection of isolated Frenkel pairs. The essence of Brink-
man’s analysis can be conveyed in the following simple (but
not very accurate) calculation. The mean free path for any
type of collision is defined by Eq. 17.23. The particular
type of collision of interest here is the one that causes
atomic displacement, i.e., which transfers energy in excess
of E4. The cross section for this process is given in terms of
the differential energy-transfer cross section between lattice
atoms by

E

ou®) = f, oBT)dT (17.140)
Note that o),(E) is not the same as the displacement cross
section of Eq. 17.116, which refers to the number of
displaced atoms created by a neutron of a particular energy.
Equation 17.140 has nothing to do with neutrons. In order
to evaluate uj;(E), we use the equivalent hard-sphere model,
for which o(E,T) is given by Eq. 17.39 (with A =1 in the
present case since identical atoms are involved in the
collision). Insertion of Eq. 17.39 into Eq. 17.140 and
integration yield

4(E) = o(E (1~§“)
oq(E) = o(E) E

where o(E) = 4nr’(E) is the total collision cross section
between lattice atoms, one of which is moving with
energy E. The term r,(E) is the equivalent hard-sphere
radius, which we take to be given by Eq. 17.41. Thus we

have for ¢(E)
A 2
o(E) = 7p? [m <%)]

Finally, the mean free path for displacement collisions is
given by

(17.141)

(17.142)

1

i (17.143)
Noy(E) No(E)1— (Eq/E)]

14(E) =

Equations 17.142 and 17.143 are plotted in Fig. 17.23. The
Born—Mayer constants for copper shown in Fig. 17.5 have

been used. The onset of closely spaced displacement
collisions (i.e., when 1, is of the order of 3to 10 A)isseen
to lie between a few tenths of a kiloelectron volt and
several kiloelectron volts. Because the reduction in I, with
PKA energy is rather gradual at low energy, assighment of a
specific energy at which a displacement spike is generated is
impossible. We also do not know whether collisions must be
separated by one, two, or three interatomic distances to
generate a displacement spike. Finally, the 1,(E) curves are
very sensitive to the interaction potential used in the
calculation and to the method used to estimate energy
transfer. However, all calculations of this sort suggest that
the displacements caused by a recoil with an energy
between 1 to 10 keV are separated by only one or two
lattice parameters. Now the average energy of the PKA
produced by a neutron flux in which the average neutron
energy is E,, is given by

1\E L 2E,
2 A
For stainless steel (A = 60) in a typical LMFBR core (E, =
0.5 MeV), the above formula shows that the average PKA
energy is about 15 keV, which is just about the energy at
which the displacement collisions become separated by
distances of the order of a lattice parameter. Thus the bulk
of the PKAs generated in the cladding of a fast reactor
should create collision cascades that consist of displacement
of every atom in the path of the PKA,

(Epg adav, = (17.144)

100 T
T I 10

Cross section

Displacement mean
free path

0.01
E, keV

Fig. 17.23 Displacement mean free path and total collision
cross section for copper atoms moving in copper.

What does such a collision cascade look like? It most
certainly does not resemble the collection of isolated
Frenkel pairs envisaged in analytical cascade theory. Figure
17.24 shows Brinkman’s conception of the collision cascade
created by a typical 5-to 20-keV PKA. The high density of
collisions along the path of the primary ejects atoms
outward. These atoms appear as a shell of interstitial atoms
surrounding a hollow core of vacancies. Brinkman called
this collision cascade a displacement spike. It would seem
that the configuration shown in Fig. 17.24 is unstable, and
indeed it probably is. The collapse of the structure,
however, need not result in annihilation of all the vacancies
and interstitials that were formed, although it is likely that
a large fraction of the point defects will be eliminated very
soon after the energetic event is over.



Brinkman proposed the displacement spike before the
phenomenon of focusing was discovered. Seeger’® modi-
fied Brinkman’s picture of the displacement spike to
account for the long-range transport of the atoms struck by
the PKA by focused collision sequences. Seeger’s sche matic
of the closely spaced collision cascade is shown in Fig.
17.25. The main difference between the configurations
shown in Figs. 17.24 and 17.25 is the greater separation of
the annular shell of interstitials from the central core of
latter.
transport of displaced atoms as dynamic crowdions. Seeger
called the nearly empty hole a depleted zone.

The displacement spike of Fig. 17.24 or the depleted
zone of Fig. 17.25 must be regarded as educated guesses of
the configuration of a collision cascade. Quantitative
description of the displacement spike was made possible
only by computer simulation of crystallites large enough to
contain the secondaries and higher order recoils of PKAs
with energies in the range from 5 to 100 keV,

vacancies in the
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~.0 OQ Fig. 17.26 Computer simulation of displacement spike due
(SQC] O to a 5-keV PKA in iron. All out-of-plane damage has been
0059 / e projected onto the (001) plane shown in the figure.
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Fig. 17.25 Later version (still qualitative) of the displace-
', vacancy. @ interstitial alom. — - path of
-, path of PKA. (After Ref. 28.)

ment spike.
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DEPLETED ZONE

The cascade shown in Fig. 17.26 represents the final
configuration of the displaced atoms and vacancies in bcc
iron resulting from interaction with a 5-keV PKA. The
temperature of 0°K is assigned to the calculation because
no motion of the point defects which requires thermal
activation (ie.,

processes with a rate governed by a



406

FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

[010] —

creaton

®
®
a ®
[:{9 ®
®
ogm.o . .°
CH;° . % ’S ¢ °
z.D.%] Egocb..oDDo .
.
° % en 3 'y
[ ] [ N J *
®
jo 15—

[100] —

Fig. 17.27 Displacement spike due to a 20-keV PKA in iron projected onto the (001) plane (0°K). | After

J. R. Beeler, Jr., Phys. Rev., 150: 170 (1966).]

Boltzmann factor) is allowed. Spontaneous recombination
of vacancies and interstitials has been included by simply
removing from the calculation any vacancy that is within a
sphere containing ~30 lattice sites around an interstitial
and vice versa. The size of this spontaneous recombination
volume is not well established {see Sec. 13.4). Lines joining
adjacent vacancies indicate stable vacancy clusters, which
are formed by chance during cascade generation.

Figure 17.26(a) shows the trajectories of all the
displaced atoms projected onto the (001) plane. The short
thick track is that of the PKA, and the paths of the
secondary knock-ons are represented by heavy dotted
tracks. The thin dashed or solid tracks are those of the
higher order recoils. Figure 17.26(b) shows the damage
pattern created by the trajectories of Fig. 17.26(a). Again
the three-dimensional configuration has been projected
onto the (001) plane for illustrative purposes. The quali-
tative concepts of Brinkman and Seeger are confirmed by
the computer experiment. The interstitials appear in a shell
around a vacancy-rich core [lower left-hand corner of Fig.
17.26(b)]. Focused collision chains were responsible for
removing the interstitials from the core. In addition, the
importance of channeling is dramatically illustrated; all
damage above the diagonal line in Fig. 17.26(b) disappears
when a very slight change is made in the initial PKA
direction to permit the head-on secondary in Fig. 17.26(a)

to channel. In this case it loses essentially all its energy by
electronic stopping while moving down a {110] channel.
Figure 17.27 shows a displacement spike created by a
20-keV PKA in iron. The numbers on the plot indicate
clusters of point defects. The cascade is slightly larger than
the 5-keV cascade and is elongated in the direction of the
initial PKA. The Kinchin—Pease formula (Eq. 17.68)
predicts that 20,000/(2 x 25) = 400 Frenkel pairs should
have been created by the 20-keV PKA. There are 198
vacancies and 198 interstitials in Fig. 17.27. The reduction
in displacement efficiency is due primarily to spontaneous
annihilation of defects of opposite type which happened to
have been created within the 30-site recombination volume.

17.10.2 Annealing of Displacement Spikes

When a collision cascade is produced in a metal at a
temperature greater than absolute zero, thermal motion of
the point defects produces recombination and clustering
beyond that which occurred in the nascent cascade. The
lifetime of cascade formation can be considered to be the
interval between the initial energizing of the PKA and the
stopping of the last higher order recoil. Cascade lifetimes,
including spontaneous recombination of unstable Frenkel
pairs, are ~10™'? sec. The annealing period during which
the spike matures into a more or less stable entity requires
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from 107 to 10 " see (which is the time required for each
point defect to make several hundred to several thousand
jumps). At the end of the annealing period, most of the
very mobile components of the spike, such as mono- and
divacancies and mono- and diinterstitials, have escaped
from the spike center (which is roughly where the PKA was
born) and have joined the general point-defect population
in the bulk of the metal. What remains of the initial
collision cascade is a collection of practically immobile
clusters of interstitial atoms and vacancies and a few
sluggish monovacancies, The clusters may either very slowly
atrophy by thermally shedding point defects or grow by
accretion of mobile point defects from the environment.

Doran®’ has developed a computer simulation of
displacement spike annealing. The calculation uses as input
information 0"K cascade configurations such as those
shown in Figs. 17.26 and 17.27. The point defects are
permitted to commence random walks in the damaged
solid. A Monte Carlo technique is used to determine the
jump directions of each point defect. Since the interstitials
are quite a bit more mobile than the vacancies, the
interstitials are permitted to jump raore frequently than the
vacancies. The jump frequencies of these two point defects
are related by (Chap. 7):

w, (s,—s\) ( c,—c\)
— =ex expl —--——"
W *P k *P kT

The migration energy of a vaeaney, ¢, is quile a bit larger
than that of an interstitial, ¢;; so w;/w, is greater than unity
and is temperature dependent. At low temperature (i.e.,
300°K), w,/w, is several thousand, and, at temperatures of
about 800K, the ratio is ~100. Real time during the
anneal is not computed accurately (there is no need to do
so)—the point-defect jump rate serves as a clock during
annealing. The ratio of the jump rates is chosen to be
consistent with the same annealing time. For example,
6000 interstitial jumps and 60 vacancy jumps at 800°K
both correspond to a real time of ~10 “ sec.

If a point defect jumps into the prescribed recombina-
tion volume around a point defect of opposite sign, the two
are annihilated. A point defect moving into a lattice site
adjacent to a cluster composed of the same lype of defect
increases the cluster size by one.* If a point defect joins a
cluster of opposite type, the cluster shrinks by one.

The computation is continued until a stable state is
attained, which usually occurs after most of the mobile
interstitials that have not been annihilated or incorporated
into clusters early in the anneal escape from the spike. At
the end of the anneal, up to 80 of the defects in the
nascent cascade have been annihilated (this figure is in
addition to the losses that occurred by athermal point-
defect recombination during cascade formation). The anni-
hilation loss increases as the temperature becomes higher.

The final state of the 20-keV cascade shown in Fig.
17.27 after annealing at 800°K is depicted in Fig. 17.28.
Twelve interstitials that have escaped from the confines of
the region covered by the diagram are not shown. The
annealed displacement spike consists mostly of clusters,

*Next-nearest-neighbor vacancies also form stable clus-
ters.

some of which contain a sizable number of point defects.
Figure 17.29 shows the effect of the short annealing period
on the distribution of clusters in the spike. Although 93%
of the interstitial atoms were present as isolated point
defects at the start of the anneal [Fig. 17.29(a)], the
number of mono- and diinterstitials remaining after anneal-
ing is just about equal to the number of interstitials
contained in clusters of three or more members. Vacancy
clustering during the anneal is even more nonuniform [ Fig.
17.29(b)|. Only about 7% of the vacancies present in the
naseent cascade (whether clustered or not) survive the
annealing as monovacaneies. The rest (~137¢ of the initial
quantity) are contained in clusters of four or more
vacarncies.

17.10.3 Cascade Overlap

The final state of the annealed cascade typified by Fig.
17.28 is stable for relatively long times. In a prolonged
irradiation, it is likely that a second or even a third
displacement spike will be created in the same region of
solid as the first one. Beeler’” has examined the conse-
quences of caseade overlap by computer simulation tech-
niques. The result of three collision cascades similar to the
one shown in Fig. 17.26 at nearly the same location is
shown in Fig. 17.30. Spike annealing was not considered.
Nonetheless, a 25-vacancy cluster was found in the particu-
lar experiment shown in Fig. 17.30. Whether a cluster
grows or shrinks as a result of the interaction of cascades
depends on a large number of factors, including the
separation and directions of the PKAs initiating the
successive spikes and the relative size of the spikes (ie.,
initial PKA energies). In particular, the vacancy clustersin a
spike can be destroyed by the long-range dynamie crowd-
ions from a nearby (not necessarily overlapping) collision
cascade. One is led to expect that vacancy clusters in an
irradiated metal will reach a saturation concentration at
large fasi-neutron fluences.

17.11 FISSION-FRAGMENT COLLISION
CASCADES IN NUCLEAR FUELS

So far, the theoretical analysis of radiation damage has
been restricted to monatomic substances. Although com-
puter simulation of collision cascades in metals is rather
advanced, very little comparable work on binary inorganic
compounds has been reported. Reference 3 describes low-
energy PKA computer simulations of displacement cascades
in lead iodide, and Beeler and Besco have studied radiation
damage in beryllium oxide.”' No computer simulation of
damage in heavy-metal oxides has been published. Most of
the analytical studies intended to elucidate the damaging
effect of fission fragments on reactor fuels have been
confined to uranium metal. To apply these results to
mixed-oxide fuels, we must consider the collisional proper-
ties of oxygen. The simplest approach to this problem is to
consider the interaction of the fission fragment with two
monatomic substances, one consisting of uranium atoms
and the other composed of oxygen atoms. The radiation-
damage parameter for the compound UO, is assumed to be
the average of the values for the two elemental calculations.
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Fig. 17.28 Displacement spike |projected onto the {001) plane| due to a 20-keV PKA in iron after
annealing at 800°K (6000 interstitial jumps and 60 vacancy jumps). The preannealed spike is shown in
Fig. 17.27. Numbers on the diagram denote cluster sizes. Twelve interstitials have migrated outside the
range of the diagram and are not shown. (After Ref. 29.)

There is some justification for this approach. Because the
energy transfer parameter A (Eq. 17.8) is unity for U—U
and O—O collisions but only 0.23 for O—U collisions, a
uranium PKA transfers energy more efficiently to the
cation sublattice than to the anion sublattice. Similarly, a
collision cascade begun by an oxygen PKA tends to remain
on the oxygen sublattice. Considering radiation damage in a
binary fuel as the sum of two independent elemental
damage problems is at least preferable to simply assuming
that UO; behaves as uranium metal.

In this section, we use the above approach to calculate
two quantities that were used in Chap. 13 to describe
different features of fission-fragment interaction in oxide
fuels, namely, the Frenkel-pair yield per fission Y,; and the
microscopic fission-gas re-solution parameter b. To treat
these problems in a concise, yet tolerably accurate, manner,
we introduce a number of simplifying assumptions, the
most significant of which is the independence of the total
stopping power of the fizsion fragment (electronic plus
atomic) on energy. Because of the large initial energy of the
fission fragments, ~90% of the energy loss is due to
electronic stopping, which is better approximated by the
square-root stopping law (Ref. 3, p. 219 and Ref. 32) than
by a constant stopping power. However, the constant
stopping-power simplification is often applied to describe
fission-fragment slowing down and will be employed here.

17.11.1 Frenkel-Pair Yield from Fission
Fragments

A general relation between the energy spectrum of the
fission-fragment flux (assuming all fragments to be born at
a specific energy E[?**) can be obtained as follows. We do
not yet invoke the constant stopping-power assumption.
Consider a sphere of unit cross-sectional area at some point
within the fuel and set $(E;,) dE; as the number of fission
fragments with energies in the range (E(, dE;) crossing
this unit sphere per second. Since the stopping power vs.
energy formula provides, by integration, a unique relation
between fragment energy and penetration distance, all
fragments in the energy range (E; dE;) which cross the
unit sphere must have come from a spherical shell of
thickness dx at a radial distance x from the unit sphere. The
volume of this shell is 47x* dx. The rate at which fission
fragments are produced per unit volume of fuel is 2F,
where F is the fission density. Of those fragments born at a
distance x from the unit sphere, a fraction 1/(4nx?) crosses
the latter (the angular distribution of the fission fragments
being isotropic). Thus the energy spectrum of the fission-
fragment flux is

1

4nx?

&(E¢p) dE¢q = 2F(4mx?® dx) = 2F dx
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Fig. 17.29 Cluster distributions following a 20-keV PKA
collision cascade in iron. The nascent cascade (preannealed
state) contained about 200 of each type of point defect.
Annealing at 800°K. (a) Interstitials. (b) Vacancies. {After
Ref. 29.)

Now the distance interval dx can be related to the energy
range dE by the definition of the stopping power:

dE¢
dx = —
(dEgr/dx),

where (dE /dx),,, is the sum of the electronic and atomic
stopping powers for both oxygen and uranium (taken
together). The energy spectrum of the fission-fragment flux
is

AE - —
LT

(17.145)
If we now introduce the constant stopping-power assump-
tion, (dEg;/dx),, can be replaced by ER"~/uss, where uey
is the range of fission fragments in the fuel. Equation
17.145 reduces to
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Fig. 17.30 A 25-vacancy cluster formed by the overlap of
three successive 5-keV displacement spikes in copper
(0°K). (After Ref. 30.)

2F
GlE ) =

Emax (17.146)
ff

The rate at which displaced atoms are produced by fission

fragments is obtained by the same arguments that led to

Eq. 17.113 for fast neutrons. Division of the displacement

rate per unit volume by the fission density yields the
Frenkel-pair yield per fission on the uranium sublattice:

Rau Ny fE?fl“
Vo), = o= —f dE; ME
(Yeidy i F Jegn’ reolbe)

z‘\'l‘:“'
X f (}“'.U(E“’,E) L’(E)dE ‘17147)
Eq
where Ny is the density of uranium atoms and A’ is the
energy-transfer parameter for collisions between fission
fragments and lattice uranium atoms. Assuming the fission-
fragment mass to be one-half the uranium atom mass,
4M; M 8

- R (17.148)

(Mg + My)® 9

To evaluate the integral in Eq. 17.147, we take
v(E) - E/{2E4) and oy;.(E¢;.E) as the Rutherford cross
section hetween fission fragments and lattice atoms (Eq.
17.37):
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(17.149)

2

BNARE AN 4<M”) !
mepu (B By =7 ‘hoel -
fi-U ff {40 MU E”E
Subject Lo the above simplifications, the Frenkel-pair yield
per fission in uranium is

T 4B Epes My

A\'Emu.\ 2
X [In (-i> (17.150)
E(l

When evaluated for the heavy fission fragment (E{{*" = 67
MeV, range in UQO, > 6 um) on the uranium sublattice in
U0, (Ng- =0.025 U atoms/A"), the above formula gives
(Y.): = 2.8 x 10°. For the same fission fragment inter-
acting with the oxygen sublattice of U0, (Ng = 0.049 O
atoms;AY), the Frenkel-pair vield is (Y,j)y = 5.5 % 10*.
We weight these yields with the probability that the fission
frapment collides with an oxygen or uranium atom. The
weighting function is

Probability of a ff collision with a U atom

arr-yNu AT
- 7 R Yo =082
of;.uNy + Uir.oNo A0 My + 225 Mg

which yields a Frenkel-pair yield in U0, of 2.4 x 10°. This
figure can be reduced by nearly an order of magnitude if
the collision cascades on each sublattice are not isolated
from each other, as has been assumed.

17.11.2 The Microscopic Re-solution Parameter

In Sec. 13.7 the parameter b governing the probability
per second of ejection of a gas atom from a bubble into the
fuel matrix was derived on the assumption that direct
encounters of the gas atoms and fission fragments con-
trolled the process. Here we analyze the dynamics of
fission-gas re-solution when the collision cascades generated
by fission fragments passing near the bubble cause energy
transfer to gas atoms. That is, instead of transferring energy
directly from the fission fragment to the gas alom, the
former first energizes the lattice atoms, which then transmit
their energy to the gas atoms. We follow the treatment of
Nelson (Ref. 45 of Chap. 13) who only considered the
collision cascades on the uranium sublattice; the oxygen
sublattice was ignored.

The collision cascades created by energetic fission
fragments in a region of fuel containing bubbles set up a
flux spectrum, ¢(E,), of recoil atoms (which, following
Nelson, are taken to be uranium atoms). The term E, is the
energy of a recoil atom, which may vary from zero to
A'EMa%. Consider a fission-gas bubble containing m gas
atoms immersed in a spatiaily uniform flux of recoil atoms.
The recoil flux in the fuel is assumed Lo be the same as the
recoil flux in the gas bubble. Let R,, be the rate of
collisions between recoils and gas atoms in the bubble
which result in transfer of energy to the latter in excess of
the minimum required for resolution (T,;,). Let the
differential energy-transfer cross section between uranium
recoils and gas atoms be uy_,(E, T), where T is the energy

imparted to the gas atom by collision with a recoil of
energy E,. The re-solution parameter is given by Rq,/m, or,
on formulating R4, in an analogous fashion to the
displacement rate in Eq. 17.147, by

R AER
b:ﬂ=f dE, ¢(E,)
T

m mm/A'
A'Ey
X f 0y (B, T)dT
1

Imri
Note that Nelson does not account for multiplication of the
collision cascade within the bubble; »(T) is sel equal to
unity.

To evaluate b we must derive expressions for the
recoil-flux spectrum, ¢(E;), and the differential cross
section for scattering of gas atoms by recoils, oy, (E.,T).
Let us consider the latter quantity first. Nelson argues that
since the recoils have energies below ~100 keV the
equivalent hard-sphere approximation can be used to
determine the cross section. Thus we may write (Eq.
17.39):

(17.151)

Amrl
A'E,
where 2r, is the distance of closest approach between a
recoil of energy E, and a stationary gas atom, This quantity
is obtained from the interatomic potential between these
two species, Vii_,(r), and the criterion relating the distance
of closest approach and the relative kinetic energy of the
collision. The latter is given for equal mass collision
partners by Eq. 17.17. For the present case the relative
kinetic energy of the collision is M E, (M, + M), where
the recoil-atom mass is that of uranium. If we assume the
gas-atom mass to be the same as that of the fission
fragments (the gas atoms were once fission fragments), we
find the unequal mass analog of Eq. 17.17 is

N[” ,
T JEr
My + Mfr)

0y o(E,T) = (17.152)

Vu_u(2l'”’ :< (17153)

We now need an expression for the potential function
Virx(r). Nelson takes the inverse-square potential (Eq.
17.36 with s = 2):

(17.154)

in which the constant A is determined by matching the
above potential to the screened Coulomb potential, Eq.
17.34, at r = a, where a is the screening radius given by Eq.
17.35. From this we deduce
A = ZZae’ exp(—1) {17.155)

where we have taken Z, = Z;.

Combining Eqs. 17.153 to 17.155 gives the equivalent
hard-sphere radius, from which the desired cross section
follows from Eq. 17.152

K
0y (EJT) —E (17.156)
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where, using the screening radius formula given by Eq.
17.35 with X = 1, the constant K is*

K - 2T Autane” expl=l) (!&) (17 157)
A7y + 2R Mg

[nserting numerical values for the quantities in Eq. 17.157,

we find K = 2.1 x 10 '? eV-em? .

We now approach the more difficult task of calculating
the recoil-flux spectrum, (k). The analysis involves only
moving lattice atoms and is not affected by the presence of
gas atoms in bubbles. The energy of the PKA produced by
collision of a fission fragment with a lattice atom is denoted
by E. The energy of the higher order recoils in the collision
cascade is designated by E,. Consider first the case in which
one PKA of energy E is produced in the laltice per unit
volume per unit time (i.e., the distribution of PKA energies
i1s not yet considered). We wish to calculate the slowing-
down density of recoils due to this monoenergetic unit
source: q (E,E;) — recoils stowing down past energy E, per
cubic centimeter per second due to a source of one PKA of
energy E per cubic centimeter per second. The recoil
slowing-down density defined above is entirely analogous to
the neutron slowing-down density commonly encountered
in reactor physics analyses.

The first collision of the PKA produces one secondary
of energy T while the PKA energy is degraded to E—T
(Fig. 17.8). Just as in the analysis of the number of
displaced atoms in Sec. 17.7, the stowing-down density due
to the PKA is equal to the sum of the slowing-down
densities of the two moving atoms arising from the first
collision:

q(EE)=aq(T.E)+q(E~T, L) (17.158)
We now invoke the hard-sphere scattering assumption and
take the probability of an energy transfer in the range
(T dT) to be dT/E. The right side of Eq. 17.158 is weighted
with this probability and integrated over all possible recoil
energies. We must, however, carefully consider the contri-
butions to the stowing down density from the five regions
of energy transfer T shown in Fig. 17.31,

Region [: 0 <<T <E ; (E— Ey) <(E—T)<E. When
the secondary receives an energy less than E,, it is not
displaced and so contributes nothing to the slowing-down
density. The scattered PKA, however, contributes to q,.
The contribution to g, from region 1 is

E

1
gi? =0+~
E JE-Eq

1 K
== f Qi (T.E,) dT
E Jegy

q,(E—T[E,) d(E —T)

*Nelson’s cross section differs {rom the value given by
combining Egs. 17.156 and 17.157 by a factor of 21?/(27(} +
Z;‘t’-)l"= 0.25. One of the Bohr radii in Nelson’s Eq. 10
should have been the screening radius. Other than this
error, his formulalion reduces 1o the present one if it is
noted that the Rydberg energy is equal to e? /2apg.
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Region II: Eq < T< (E—E) E < (E—T)<

(K —E,4). In this region the secondary contributes only
1 atom (itself) to q, , and

an | f“'"zr 1)dT 1 f“*“xl (- TE.)d(l I
- - r = T
qi E l‘l(l ( E lil. Q) ,) ( )

or

E-E —E; 1 F
it - S A - f q(T.E)dT

Is E Jk,
1 K
_ T E. dT
E J:‘:'l‘:(l ql( \Pl) d

Region HL: (E—E )< T < B (E—E) < (E—T)<
E,. [n this type collision, both the scattered PKA and the
secondary are reduced in energy below E, and thus
contribute 1 atom each to g, . However, they cannot cause
any more displacements that contribute to q, .

1 k 1 K,
q(llmzifr(l)drr+if ' (H d(KE—T)
1N JE-E, I JE-k,
,>2<—2E"_E>
k

Region 1V: E. < T< (E—E)); Eq< (E—T)<
(E— E,). Region 1V is equivalent to region 11 {by symmetry
of the diagram of Fig. 17.31), and we have

1 %
gtV -~ f . (T.E,) dT
E Ji,

1 ¢ E-E, —E
- - R A
E ‘/;:-1«:([ b E

Region V: (E—Eq) <T <E: 0 <(E—~ T)<E,. Region
Visequivalent to region I:

q(T.E,)dT

Adding the preceding five components of the slowing-down
density yields

AL, —E 2 [F
qQ(EE) = —— +— q (T E)dT (17.159)
E E Jg,

A similar analysis for E, < E/2 produces the same result.
Converting this integral equation to a differential equation
and solving the latter by the same methods applied to Eq.
17.65 (i.e., differentiation with respect to E) yields the
solution

aq,(EE,) = Ef(E))

The function f(E,) can be obtained by inserting the above
solution for q, into the integral equation, which results in

E,—E
41 (B.E,) - 2(—E2—’

r

)E (for E, <E) (17.160)
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Fig. 17.31 Diagram for calculating the recoil slowing-down
density due to contributions from five regions of energy of
the secondary.

Note that

E.2E, ) = (k) =
g ( 1) ( 28,

in accord with the Kinchin—Pease result for the number of

displaced atoms; the latter are jusl recoils that have slowed
down to encrgies less than 2E,,.

Since we are generally interested in recoil energies far
above the displacement threshold E;, Eq. 17.160 can be
simplified to
(for E, < E)

2E
q:(E\E,) "L (17.161)

r

When the PKA energy is less than E,, the slowing-down
density is

q(E,E) =0 (for E, > E) (17.162)
Equation 17.162 applies to a unit volumetric source of
PKAs all of energy E. Fission-fragment bombardment of
the lattice, however, creates a PKA source with a distribu-
tion of energies. Let F(E;;,E) dE dE be the rate at which
PKAs in the energy range (EdJE) are created per unit
volume and per unit time by fission fragments in the energy
range (E¢,dE;;}). The slowing-down density to this dis-
tributed source is given by

.max
ff

\E g
aE)=Jo " kg Jy " ai(EE,) F(Eq E) dE

where A'E” is the maximum possible PKA energy due to
collision of a lattice atom with a fission fragment of energy

E¢r. Using Eqgs. 17.161 and 17.162 for q, (E,E,), we find
that the stowing-down density is

Jmas
(E.) - 2 f}“ff
Atk E, Jr

The slowing-down density can be converted to the
recoil-flux spectrum using the continuous slowing-down
model commonly applied to similar problems in neutron
thermalization.*® For hard-sphere collisions between like
atoms, one of which is moving with energy E,, the average
energy loss per collision is E, /2. Therefore, in order to pass
through an energy range dE,, dE, /(E,/2) collisions per alom
are needed. If q(E,) recoils em * sec ' are passing through
dE,, the number of collisions per cubic centimeter per
second which occurs due to the recoils in the energy range
(E,dE.} is 2q(E,) dE,/E;. On the other hand. the total
collision density is also given by oy (E;) Ny &(E,) dE,,
where oy . (E,) is the total cross section for scattering of
stationary lattice atoms by lattice atoms moving with
energy E,. Equating these two expressions for the collision
density yields

VEgp
dEgg f EF(E.E)dE  (17.163)
Ey

2q(E,)

AE) = ——————
i ' Er U[V_U(Er) N(?

(17.164)

The source term in Eq. 17.163 is given by Eq. 17.28:

F(E”,E) = NU (:)‘ E”) U“'_U(E”,E’ ‘171()5)
where the fission-fragment flux is given by Eq. 17.1416 and
the fission-fragment—uranium atom scattering cross section
is of the Rutherford type given by Eq. 17.149,

Substituting Egs. 17.164 and 17.165 into 17.163 yields
Hln.’l\

4

YE) = 77—
' ES oy ulE) Jey

dE;; &(E¢r)

\V'Epg
X ﬁ E u¢r.o(E E) dE (17.166)

Inserting the appropriate expressions for o(E;) and
UH-U( E“ ,E) and integrating gi\'(‘

H(E,) = mFueg Zj 2’ (&)

EfF*NE? oy (B \My

\’Emu\‘ 2
X [In (—L)]
E,

Nelson takes a very rough approximation to the cross
section uy_y(E;). He assumes that it is equal to the square
of the lattice parameter of UO, (a, = 5.47 A):

(17.167)

oy.u(E) =al = (17.168)

ud,

The last equality in the above formula is derived from the
relation between atom density and the fce structure of the
cation sublattice of UOQ, (ie., Ny = 4fa;‘,). Using Eq.
17.168 in 17.167, we find the recoil flux to be
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. 2
BF AERYT
O(Ey) = —5|In|——7r—
E! E,

(17.169)
where B is a constant:*
Ny a, Z: 2% ' (M
B:ﬂﬂrr u o il e (_Lf> (17.170)
E;‘f x 1\1[}

Inserting numerical values into Eq. 17.170, we find
B=0.73x 107 eV.em.

Substituting Eqgs. 17.156 and 17.169 into Eq. 17.151
and neglecting T,,,, compared with \'E,, we find the
microscopic re-solution parameter to be

2

KB J\’ 3 ‘\’ 2 Emalx .

b= (,’ m[( )" B ] Fo(17.171)
2T, Tmin

min

Using the values of the constants K and B found in Egs.
17.157 and 17.170 and assuming T,,,;, = 300 eV, we find
that the above formula gives b=17 x 10" 7 F sec™. This
value is ~40 times larger than the re-solution parameter
based on direct encounters between fission fragments and
gas atoms in a bubble (Eq. 13.116). Note that the
re-solution parameter given by Eq. 17.171 is very sensitive
to the value of T, ;, (which was just guessed by Nelson),
does not consider the role of the oxygen sublattice in UO,
at all, incorporates what appears to be a rather large cross
section between uranium atoms in the cascade, and assumes
a constant electronic stopping power.

17.12 NOMENCLATURE

a = screening radius
ag = Bohr radius of the hydrogen atom
a, = lattice constant
a) = coefficients representing degree of nonisotropy
of elastic neutron-scattering cross section
A = constant given by Eq. 17.84: constant in poten-
tial function; mass number
b = re-solution parameter
B = constant given by Eq. 17.170
dpa = displacements per atom
D = bond energy; distance between atoms in a
particular direction
e = electronic charge
E = kinetic energy of a particle
E. =enemgy below which the hard-sphere model is
valid
=energy below which ionization does not take
place
E.n = channeling energy
E4 = displacement energy
E; = focusing energy

E.

*Eqguations 17.169 and 17.170 can be translormed
into Nelson’s Eq.9 by making the substitutions
Ekrva = e i(2ap) and O = 2Fusr. The latter is obtained by
integrating Eq. 17.146 over 0 < E;¢ <ER**.

E; = energy of bombarding ion
E, = neutron energy
E,.uL =energy below which a moving atom cannot be
ionized by collision with electrons in the solid
E, =relative kinetic energy of two particles in a
head-on collision; energy of a recoil atom;
maximum energy for replacement during a
focused collision chain
dE/dx = stopping power
AEJ,, = energy of sublimation
F = collision density
F = fissions cm ™ sec”
F, = force on lattice atom i
g = relative speed of two particles in head-on
collision
G; = damage function for property i
I = Planck’s constant divided by 27
[ = particle current; binding energy of an electron
in the solid
k = force constant in a parabolic potential; Boltz-
mann’s constant; constant in Lindhard’s stop-
ping power formula, Eq. 17.53a
K = constant given by Eq. 17.157
KE = total kinetic energy of two particles
= average path length between collisions
l;y = average path length between displacement colli-
sions
M = particle mass
m, = electronic mass
N = density of target particles
n, =density of electrons in a solid capable of
absorbing energy from a moving particle
p = probability of energy transfer
P = probability of channeling or focusing
P, = displacement probability
P; = focusing probability
Py = Legendre polynomial
P; = mechanical or dimensional property of a solid
PKA = primary knock-on atom
q = slowing-down density
Q = excitation energy of nucleus
r = separation distance
r, = hard-sphere radius
R.n = radius of a channel
R,y = displacement rate per unit volume in a neutron
flux
Ray = rate of collisions between recoils and gas atoms
in bubble which result in re-solution
R,, = projected range of particle
Rt = total range of particle
s =exponent in the inverse-power polential; en-
tropy of motion
t = time
t. = collision time
T = temperature, “K; kinetic energy transferred to
struck particle
T, = maximum kinetic energy transferable to a
struck particle
u = particle velocity in center-of-mass coordinates
U = energy per atom in a solid
v =volume per atom in a solid; particle speed in
laboratory conditions



414
Vo = speed of the center of mass of a two-particle
system
v, = velocity of channeled particle along the channel
axis

V(r) = potential energy between two particles that are
a distance r apart
V.n(t) = channel potential
w = jump frequency
x = path length
X, = distance of closest approach
collision
y =dimensionless energy variable, Eq. 17.82
Y, = vield of Frenkel pairs per fission
z = channel axis
Z = atomic number

in a head-on

Grecek letters
8 = compressibility
€ = migration energy: reduced energy in Lindhard’s
model
€* = energy of atom at saddle point

€., = energy of atom in equilibrium position in lattice
k = force constant of the channel potential
A =wavelength of particle trajectory in channel:

parameter in the screening radius formula, Eq.
17.35
A = mass-number group, Eq. 17.8
i = reduced mass, Eq. 17.14
wep = fission-fragment range in a solid
v = number of displaced atoms per PKA
d{2 = differential solid-angle element
O(E) = differential energy flux
o), = scattering angles in laboratory coordinates
¢ = total particle flux
p = constant in the Born—Mayer potential function
o(E) = total atomic collision cross section
o(E.T) = differential energy-transfer cross section
o(E.0) = differential angular cross section
oq(E, } = displacement cross section for neutrons of
energy E,
ULI(ED = cross section for energy transfers between E,
and E
oa(E, E) = differential energy-transfer cross section for
neutron scatiering
0 = scattering angle in center-of-mass coordinates
0, =recoil angle in focused collision chain
0f = maximum angle for which focusing is possible
ON"* = maximum injection angle into a channel
fraction of PKA energy lost by electronic
excitation during slowing down

See
[

Subscripls

a = laltice atom

e =electron

el = elastic scattering
eq = at equilibrium

f = final state (after colliston)
ff = fission fragment

g = fission gas

i = interstitial
in = inelastic scatteting
(0 = oxygen

W
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16.

17.

18.

19,

20.
21.

22.

. L. T. Chadderton,

.d. Lindhard and M.

.R. V. Jan and A. Seeger, Phyvs. Status Solidi, 3:

. G. L. Kulcinski, J.

. C. Erginsoy, C.
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U = uranium

= vacancy

1 = particle one

2 = particle two

0 = initial state (before collision)
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17.14 PROBLEMS

17.1 Figure 15.6 shows a portion of a fission-fragment
track in UQ;. At one point, the track changes direction
slightly, which indicates that the fragment has made a
Rutherford collision with a lattice atom at this point. The
fragment, which may be assumed to have a birth energy of
100 MeV, an atomic number of 42, and a mass number of
100, has travelled 2 um before undergoing the eollision.

(a) What is the effective charge of the fragment at
birth?

(b) Prior to the Rutherford collision, the fission frag-
ment loses energy by electronic excitation according to the
Bethe formula. Calculate the fragment energy at the point
of the Rutherford collision. Assume the mean exeitation
energy in the Bethe formulais [ = 8.87 (e V).

(¢) If Lthe scaltering angle on the photograph is 5,
calculate the energy transferred to the struck lattice atom
(1) if the latter is oxygen and (2) if the latter is uranium.

17.2 Derive the differential angular cross section for
Rutherford scattering from the differential energy-transfer
cross section (Eq. 17.37).

17.3 It is desired to join the screened Coulomb potential
to Lthe inverse power potential in which the constants A and
s are known. The matching point (i.e., the energy E* above
which the screened Coulomb potential is used and below
which the inverse power potential is applicable) is deter-
mined by the criterion that the distance of closest approach
in a head-on collision is the same when computed by both
potential functions. Derive the equation from which E¥* can
be calculated.

17.4 The simple bond theory of lattice cohesion is used to
calculate the displacement threshold in tantalum for a
knock-on moving in the direction shown in the sketch. The
repulsive potential between lattice atoms is approximated
by the harmonic-force law.

(a) If the energy of sublimation of tantalum is 8.1 ¢V,
what is the bond strength D?

(b) If the coefficient of compressibility of tantalum is
0.53 x 10" ¢m?®/dyne and the density of tantalum is 16.6
giem” . what is the product of the force constant k and the
square of the lattice parameter?

(¢) What are the Miller indices of the PKA direction
shown in the sketeh?

(d) At what point along this direction is the PKA
potential energy a maximum? Calculate the difference
between the PKA energy at this saddle point and the energy
in the equilibrium (lattice) site. This potential-energy
difference is identified with the displacement energy E, for
this direction.

(e) The location marked with an X in the sketch is an
octahedral interstitial site in the bee lattice. What is the
energy of the PKA when it reaches this position?

(f) Sketch (but do net compute) the variation of the
PKA potential encrgy as it moves along the specified
direction.

17.5 Encrgy losses to the ring of atoms surrounding the
focusing direction provide a mechanism for terminating a
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focused collision sequence. Consider a <110} focusing
sequence in the fec lattice. In the sketch the atom A, is
struck and moves off in the direction of A.. Along this
path it must pass through the ring of atoms labeled B.

(a) Calculate the B—A, distance when collision of A,
and A, occurs. Note that A;, A,, and a B atom lieon a
close-packed (111) plane. Assume that the equivalent
hard-sphere diameter based on the Born—Mayer potential
(2r,) is smaller than the interatomic distance along the
chain (D). Express r,, in terms of the energy of A (denoted
by E)and D in terms of the focusing energy E;.

(b) Calculate the increase in the four A; —B interaction
energies as A; moves from its initial position to the
collision point.

(c) The total of A, —B interaction energy calculated in
(b) is lost to the focused collision sequence (this energy
appears as thermal energy in the lattice when the four B
atoms and A, relax and then oscillate about their equilib-
rium positions). How many collisions can a dynamic
crowdion of initial energy E, < E; encounter along the
(1107 direction before it stops?

17.6 A 30-keV ion enters a channel in the solid lattice and
loses energy only by electronic excitation. Using the
Lindhard stopping-power formula, determine the distance
travelled by the ion before it is dechanneled. The minimum
channeling energy is equal to 300 eV,

17.7 The (n.y) reaction in °°Fe releases a prompt gamma
ray of E, =7 MeV.

(a) What is the recoil energy of the *7Fe product
nucleus?

(b) Use the Lindhard model to determine the number
of displaced atoms per °’Fe recoil. Compare this result
with that obtained by the Kinchin—Pease formula. Assume
Eq = 25eV.

(c) If the thermal component of the neutron flux in a
fast reactor is 10'"' neutrons em? sec ', what is the
damage production rate (i.e., displacements em ™ sec ') due
to the {ny) reaction in *° Fe?

(d) If the fast flux is given by

B, = 10'° §(E, —0.5) (B, in MeV)
what is the damage production rate due to the fast flux in
iron? Assume that scattering of 0.5-MeV neutrons from
iron is elastic and isotropic in the center-of-mass system.

Use the Kinchin—Pease displacement formula in (¢) and
(d) and look up the necessary neutron-cross-section data.

17.8 For a monoenergetic fast-neutron flux of energy 0.5
MeV, calculate the number of displacements per atom
(dpa) in iron at a fast-neutron fluence of 10°? neutrons/

cme .

17.9 Calculate the average iron PKA energy in a fission-
neutron spectrum:

O(E, ) = constant X exp (—E, ) sinh (2E, )%

where E, is the neutron energy in MeV. How does this
value compare with the approximation of calculating the

average PKA energy due to collision with the neutron of
average energy? Assume isotropic, elastic scattering and an
energy -independent scattering cross section.

17.10 Calculate the number of atoms displaced by a
14-MeV neutron incident on the stainless-steel first wall of
a fusion reactor. Compare this result with the number of
displacements produced by a 0.5-MeV neutron, which is the
average neutron energy in an LMIFBR. Obtain displacement
cross sections from Fig. 17.17.

17.11 Only relatively energetic electrons are capable of
causing atomic displacements in metals. For electrons in the
million electron volt range, relativistic kinematics of the
collision process must be employed. The cnergy transferred
to a stationary atom of mass M and atomic number Z by an
electron of energy E, is
T - %(%‘;) E. (1+E.)(1—cos0)

where m,, is the mass of the clectron, () is the center-of-mass
scattering angle and all energies are expressed in Me V.

The interaction leading to displacement is nuclear
Rutherford scattering between the electron and the un-
screened nucleus of the atom. The differential energy-
transfer cross section for this process is given by

s 1—=pT o T
: i 2 - 4 r‘L ‘4 —t- 11) D Y B
a(E,.T) /s 5 T {1 3 (Tm>

+ n<i§§>ﬁ [(:‘) - (;-FT )]} MeV

where 3 is the ratio of the electron speed to the speed of
light and the electron energy is

.1 1 _

{in all the above formulas, the electron rest mass is taken as
0.5 MeV instead of the accurate value of 0.51 MeV). _

(a) Determine the minimum electron energy, E''",
required to produce displacements in a metal for which the
displacement threshold is E;. _

(b) If an electron of energy E! > E"'" is injected into
or is born in the metal and deposits all its energy there,
determine the total number of displacements per electron
n(E,). Consider the process as one of occasional electron—
atom collisions between which the electron loses energy by
radiation (bremsstrahlung) and by interaction with the
other electrons of the medium. The total stopping power
(dE./dx), due to these two processes is nearly energy
independent for 0.2 < E.< 3 MeV (Ref. 2, p. 161). To
determine the number of displaced atoms, begin by
formulating the probability py(E,.,T)dT =average number
of displacement collisions per unit energy loss which
produces PKAs in (T, dT).

(¢) For the limiting case of E? just slightly larger than
Emin obtain an analytical solution to (b).

17.12 1t is desired to calculate the rate of atom displace-
ments in a medium that is subject to a gamma-ray flux of
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known spectrum. All damage can be assumed due to the
Compton electrons produced by the interaction of the
gamma rays with the electrons in the solid. The Compton
electrons are produced with a spectrum of energies: assume
that the number of displaced atoms produced by a single
Compton electron of energy E,. is known.

The following quantities can be considered known:
N = the total atom density of the solid
M = the mass of an atom in the solid
E, = the minimum energy that an atom must
receive to be displaced, eV
o(E,) = the energy spectrum of the gamma-ray
flux in the medium; the maximum photon
energy of the spectrum is E
0. (Ey B ) dE. -~ the differential cross seetion for produc-
tion of Compton electrons with energy in
the range E to E, + dE, by photons of
energy E'y (i.e.. the Klein—Nishina for-
mula)
n(E,) = the number of displaced atoms produced
by an electron of energy E_.

(a) Derive an integral expression for R, the number of
displaced atoms em * sec '; pay careful attention to Lhe
limits of integration.

(b) What is the minimum value of Ey at which damage
can occur?

17.13 In the fuel, fast neutrons, as well as fission
fragments and recoils, can cause re-solution of fission-gas
bubbles. What is the resolution parameter b for a known
fast-neutron-flux spectrum, ¢(E,)?

Determine b for a monoenergetic fast flux of 10'°
neutrons cm?® sec' at E, =05 MeV and an elastic
scattering cross section that is isotropic and equal to 10
barns. For this fast flux, calculate the fission density in a
mixed-oxide fuel containing 15%. plutonium (see Chap. 10).
It is shown in Sec. 17.11 that b for fission-fragment recoils
is1.7 x 10”7 F. Compare re=solution by fast neutrons with
that by fission-fragment recoils.

17.14 Helium atoms contained in helium bubbles that
have precipitated in stainlesss-steel cladding can be redis-
solved by energetic collisions with fast neutrons or with
recoil metal aloms. Calculate the re-solution parameter b
for the processes due to:

(a) Direct collisions of fast neutrons with helium atoms.

(b) Collisions of helium atoms in the bubble with recoil
atoms (assumed to be iron) produced in the collision
cascade,

Use the following property values. Elastic-neutron-
scattering cross sections: helium, 1 barn; iron, 3 barns.
[ron—iron atomic cross section, 5 A”. Fast-neutron flux
{assume monoenergelic with E, = 0.5 MeV, &= 10'°
neutrons em™ sec '), Minimum helium-atom energy for
re-solution, 200 e V.





