Chapter 19

Radiation Etfects in Metals:
Void Swelling and Irradiation Creep

19.1 INTRODUCTION

Unti! about 1967 the most detrimental radiation effect
expected to be suffered by the stainless-steel c¢ladding of
the fuel elements of the projected liquid-metal-cooled fast
breeder reactor (LMFBR) was embrittiement due to exces-
sive hardening at low temperatures or helium agglomeration
at grain boundaries at high temperatures. These problems,
however, were at least qualitatively understood, and suffi-
cient experimental data had been amassed to permit
embrittlement to be circumvented by careful design. Since
that time a number of unexpected phenomena have heen
uncovered by microseopic examination of fuel elements
and structural components that had been irradiated in a fast
reactor environment for long periods. In addition to the
chemical attack of the inside of the cladding by the fuel
(Chap. 12), steels irradiated to large fast-neutron fluenees
exhibited dramatic density decreases. Using transmission
electron microscopy, Cawthorne and Fulton' demonstrated
that this swelling was due to the formation of smali cavities
within the grains of the metal. These voids, which did not
contain sufficient gas (if any) to be classed as bubbles,
ranged in size from the smallest observable to greater than
1000 A. Further research has shown that voids form in
stainless steel only at temperatures between ~350 to
600°C. Unfortunately, this range falls squarely within the
temperature zone in which the cladding of LMFBR fuel
pins is designed to operate {Table 10.2).

Void formation is not unique to stainless steel; in fact,
steel is one of the alloys most resistant to this phenomenon.
Nearly all metals swell by this mechanism over a tempera-
ture band from 0.3 to 0.55 of the absolute melting
temperature.

The severity of metal swelling under irradiation also
depends on the fast-neutron exposure {(and to a much
smaller extent on the fast-neutron flux). There appears to
be an incubation period up to a fast fluence of ~10%?
neutrons/cm® in which no observable swelling of steel
occurs. Thereafter swelling {measured, as in the case of fuel
swelling by fission gases, as AV/V) increases as (0t)", where
the exponent n is greater than unity. Very few data at
fluences above 107 neutrons/em? exist, and, because of
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the many variables controlling swelling, extrapolation of
the dose dependence to the design fluence of the LMFBR
(~3 x 10%? neutrons/em?) is very insecure. Consequently,
there has been intense activity in developing theoretical
models that can aecurately predict swelling at large fluences
and in devising experimental techniques other than neutron
irradiation to produce voids in metals in short times. Of
special interest is the fluence to which the power law
AViV ~ (bt)" extends and if and at what fluence the
swelling saturates. Leveling off of the swelling eurve has not
vet been observed in reactor-irradiated steel, but high-
energy ion bombardment (Sec. 17.9) has shown® that
swelling of stainless steel saturates at fluences approaching
10%* neutrons/em?. The high equivalent neutron-fluence
ion-irradiation studies, taken with extrapolation of low-
fluence neutron-irradiation data, suggest that type 316
stainless steel, which is the most likely LMFBR cladding,
will swell by 5 to 10% in a commercial reactor. The
ramifications of volume increases of this magnitude on
fuel-element design are profound, and the remedies are
costly. Some of the undesirable side effects of swelling can
be alieviated by the related phenomenon of irradiation
creep. The effects of swelling and irradiation creep on core
design are discussed in Chap. 21.

The origins of void swelling of metals are qualitatively
understood. Collision of fast neutrons with lattice atoms
producesi large numbers of vacancy—interstitial pairs (see
Chap. 17). Most of these point defects eventually recom-
bine with each other or migrate to sinks in the solid where
the point defects lose their identity. The most effective
sinks are dislocations, either those which are part of the
natural dislocation network of the metal or dislocation
loops created by condensation of radiation-produced inter-
stitials. Precipitates and grain boundaries also act to remove
point defects from the medium. The dynamic balance
between the point-defect creation and removal processes
during irradiation sustains concentrations of vacancies and
interstitials far in excess of thermal equilibrium (see
Fig. 13.17).

Nucleation of segregated clusters of interstitials and
vacancies can take place provided that the temperature is
high enough so that both interstitials and vacancies are
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mobile in the solid, but not so high that the point defects
are removed by recombination or migration to sinks so
quickly that high supersaturation cannot be maintained.
The type of cluster formed by interstitials is invariably a
dislocation loop. Vacancies, however, can agglomerate
either into platelets, which collapse into dislocation loops,
or into three-dimensional clusters, which are termed voids.
The atomic structures of interstitial and vacancy loops are
shown in Fig. 18.4.

The collection of interstitial atoms as extra planes in
the lattice causes the solid to swell. If the vacancies
condensed into analogous vacancy loops, the lattice con-
traction around these loops would cause shrinkage of the
surrounding solid by an amount that just counterbalances
the swelling due to interstitial loops. However, when the
vacancies agglomerate into voids, no lattice contraction is
available to cancel the dilatation due to the interstitial
loops, and a net volume increase of the solid ensues. In
irradiated zirconium, for example, large vacancy loops, but
no voids and hence no swelling, are observed.

The relative stability of voids and vacancy loops can be
assessed by comparing the energy ditference between the
particular cluster containing m vacancies and the perfect
lattice. For the void this difference is just the energy
required to form the surface of the void:

Eyoiq = 47RYy (19.1)

where 7y is the surface tension of the solid (approximately
500 dynes/em for stainless steel) and R is the radius of the
void, which is related to the number of vacancies in the
cavity by

4R’
T} (19.2)

m

where {1 is the atomic volume, or the volume contributed
by each vacancy to the void. The energy of the void is thus

. 3Qm\®
Lvt)id - 4"7( An )

(19.3)

The energy of a faulted dislocation loop composed of m
vacancies in a disk of radius R, is

El()up = (2TTRI)Td + TTR? Vst (191)

where 74 is the energy per unit length (i.e., the line tension)
of the dislocation comprising the periphery of the loop.
According to Eq. 8.10 74 is ~Gb*, where b is the Burgers
vector of the faulted loop.

The term <y, is the energy per unit area of the stacking
fault enclosed by the loop. As shown in Sec. 3.6, the
sequence of close-packed (111) planes in the fcc structure is
ordered 123123.... When part of one of these planes is
removed or a section of another (111) plane is inserted, the
stacking sequence is disturbed, but the atoms surrounding
the stacking fault are surrounded by the same number (12}
of nearest neighbors as in the perfect lattice. However, the
configuration of the next-nearest neighbors is slightly
altered, and the stacking-fault configuration is somewhat
more energetic than the perfect lattice. This energy
difference is manifest as the stacking-fault energy. Because
the energy difference is due to second-order atomic

arrangements, 7yg; is small, typical values being ~10
dynes{cm.

In fee metals dislocation loops form on the close-
packed (111) planes in which the area per atom is 3% a2 /4,
where a, is the lattice constant. The radius of a vacancy
loop created by removal of m atoms from (or the
condensation of m vacancies on) a (111) plane is

3% Qm\*
Rl = (
ma,
where €2 =a;/4 is the atomic volume in the fee structure.

The encrgy of the faulted vacancy loop is therefore

3% Slm)‘&+ 3" Qym
ma, a

(19.5)

Eloop = 277Gb2( (196)

(o]

If the loop is unfaulted (i.e., the stacking fault is removed),
the second term on the right of Eq. 19.6 is absent, but the
resulting reduction in energy is partially compensated by
the larger Burgers vector of the perfect loop compared to
that of the faulted loop.

The void and loop energies given by Egs. 19.3 and 19.6
are rather close to each other, and conclusions conceming
the relative stability of the two types of vacancy clusters
are uncertain because important parameters, such as the
dislocation line tension, are not accurately known. It
appears that the void is the stable form for small clusters
(small m), but, as m increases, the loop becomes the
energetically favored configuration. If the presence of the
stacking-fault term in Eq. 19.6 is ignored temporarily, the
energy of the void increases more rapidly with m than that
of the loop, and the energy balance lips in favor of the loop
at void radii of several tens of angstroms. However, collapse
of the embryo void into a vacancy loop is probably
impeded by the presence of small quantities of helium gas
in the void, and thus voids may survive and grow. Equation
19.6 also indicates that loops rather than voids are favored
in metals in which the stacking-fault energy is low. Gold,
for example, has a very low stacking-fault energy, and
irradiation-produced voids have not been observed in this
metal. On the other hand, voids are easily produced in
nickel, for which vy, is large. The stacking-fault energy in
stainless steel lies between these two extremes, and voids
can be produced in this alloy but only al much higher
fluences than that required for void formation in nickel.
This observation is consistent with the preceding discussion
of the effect of stacking-fault energy on the relative
stability of voids and vacancy loops, but many other factors
influence the relative resistances to void formation of a
complex alloy, such as steel, and of pure metals, such as
gold or nickel.

Granted that, given a choice between forming loops or
voids, vacancies will condense as the latter, there remains
the question of why the irradiation-produced point defects
form separate interstitial loops and voids in the first place.
Since vacancies and interstitials are formed in equal
numbers by fast-neutron bombardment, one would expect
that point defects of both types would diffuse to voids at
equal rates and hence produce no net growth of the voids.
Inasmuch as the voids represent accumulated excess vacan-
cies, the interstitials must be preferentially absorbed else-
where in the solid. The preferential interstitial sink is
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undoubtedly the dislocations, either those belonging to the
original network in the metal or the interstitial loops. It was
noted in Sec. 13.9 that dislocations exhibit a slightly larger
capture radius for interstitials than for vacancies, and it is
this fact which fundamentally provides the mechanism for
void formation. The preference of dislocations for intersti-
tials is due to the interaction of the strain field around the
dislocation with the strain field established by the misfit of
an interstitial atom in the lattice (the strain field around a
vacancy is much smaller than that around an interstitial).
This strain-field interaction causes an attraction of inter-
stitials for dislocations when the two are in proximity.
Ham® has shown that the directed drift of interstitials
toward dislocations can be incorporated into a diffusional
model of the transport process if the dislocation line is
assigned a somewhat larger capture radius for interstitials
than for vacancies (see problem 13.7). The preferred
migration of interstitials to dislocations leaves the matrix of
the metal slightly depleted in interstitials relative to
vacancies; so nonpreferential sinks, such as voids, absorb
vacancies at a somewhat greater rate than interstitials and
growth results.

In summary, the conditions necessary for void swelling
are:

1. Both interstitials and vacancies must be mobile in the
solid. This requirement is easily met by interstitials, which
can migrate in metals at very low temperatures. If the
vacancies are not mobile as well, they will simply be
annihilated by the cloud of moving interstitials.

2. Point defects must he capable of being removed at
sinks provided by structural defects in the solid in addition
to being destroyed by recombination. Moreover, one of the
sinks must have a preference for the interstitials in order to
permit establishment of the excess vacancy population
necessary for voids to form.

3. The supersaturation of vacancies must be large
enough to permit voids and dislocation loops to be
nucleated, either homogeneously or heterogeneously, and
to grow. At temperatures sufficiently high that the thermal
equilibrium concentration of vacancies at the void surface is
comparable to that sustained in the matrix by irradiation,
void nucleation and growth cease. At high temperatures
voids thermally emit vacancies as fast as the irradiation-
produced vacancies arrive from the bulk of the solid.

4. Trace quantities of insoluble gases must be present to
stabilize the embryo voids and prevent collapse to vaeancy
loops. Transmutation helium provides the necessary gas
content in neutron-irradiated metals, although other gas-
eous impurities (oxygen, nitrogen, and hydrogen) present in
most metals can perform the same function. Although some
helium gas is undoubtedly present in voids, there is
definitely not enough to class these cavities as equilibrium
bubbles.

19.2 OBSERVED CHARACTERISTICS
OF VOIDS

Excellent summaries of the experimental observations
of voids in metals have been presented by Bement? and by
Norris.® In addition, the papers in two conferences devoted

to voids®*” contain much detailed information pertinent to

the experimental and theoretical status of the subject.
Emphasis here is placed on voids formed in neutron-irradi-
ated stainless steel. Void formation in the potential
cladding materials nickel and its alloys vanadium and
molybdenum will not be considered in detail. In addition to
fast-neutron irradiation, voids may be formed by bombard-
ing metals with heavy ions (e.g., protons, carbon, and
self-ions) or with electrons. The results of these investiga-
tions are summarized in Refs. 4 and b.

The bulk of the information on void formation in
metals has been obtained by transmission electron micros-
copy (Sec. 18.1). This technique permits the void distribu-
tion function, N(R) dR = number of voids/em® with radii
hetween R and R + dR, to be measured. Often, only the
total void number density,

N =/ N(R)dR (19.7)
the average void size,
_ 1 =
R:—,f R N(R) dR (19.8)
N Jo
or the void swelling,
AV -
—ainf R* N(R) dR (19.9)
v 3 0

are reported. If the void distribution is narrow, the swelling
may be expressed by

ﬂ=(i 7R3 N) (19.10)

\Y% 3

Most theoretical treatments are content to predict the
average void size, assuming that the void density is a
specified number rather than the complete void distribution
function.

Swelling can also be experimentally determined by
immersing a sample of known weight in a fluid to measure
the solid volume. However, only the electron microscope
can provide data on void size and density. In addition, this
tool can provide information on the evolution of the
dislocation structure of the irradiated metal. This informa-
tion consists of:

1. The density of network dislocations (i.e., dislocations
other than those comprising the loops).

2. The total dislocation line length of the loops, which
is determined by the average diameter of the loops and the
number density of the loops.

19.2.1 The Void Distribution Function

Figure 19.1 shows the void-size distributions for stain-
less steel irradiated at different temperatures but to the
same fluence. The distributions at low temperatures are
approximately Gaussian, with the peak shifted to the larger
void sizes as the temperature is increased. The very narrow
distributions at low temperatures indicate that, although
void nucleation has oecurred, the low growth rate prevents
voids from attaining large sizes in the allotted irradiation
time. At high temperatures the distribution function is very
broad and contains some very large voids and a small
proportion of little ones. This type of distribution suggests
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Fig. 19.1 Void-size distribution N(R) in type 316 stainless
steel irradiated to a fluence of 6 x 10?2 neutrons/em? at
various temperatures. (After J. I. Bramman et al., p. 125,
Ref. 6.)

that nucleation has ceased and a constant density of voids is
in the process of growing.
19.2.2 Void Size and Density

The zeroth and first moments of the void distribution
function, which represent the void number density and
average void size, respectively, are shown in the three-
dimensional representations of Fig. 19.2. Figure 19.2(a)
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)
>

indicates a rapid increase in void size at low temperatures
and a smaller rate of increase at high temperatures. Similar
nonlinear behavior is seen along the fluence axis. Figure
19.2(b) shows that the void number density decreases with
increasing temperature and increases with fluence. Observed
void densities range from 10'? to 10' ® voids/cm®.

19.2.3 Void Swelling

According to Eq. 19.10, the dependence of volume
swelling on temperature and fluence could be constructed
by multiplying the cube of the surface heights of
Fig. 19.2(a) by the surface heights in Fig. 19.2(b). Cuts
through this three-dimensional representation of volume
swelling are shown in Figs. 19.3 and 19.4. Figure 19.3
shows the restriction of swelling to the temperature band
350 to 600°C with peak swelling occurring at ~500°C.
Figure 19.4 indicates a power-law increase of void swelling
with neutron fluence. The fluence dependence is of the
form

AV n

v o© (dt) (19.11)
where the exponent n js about unity at 400°C and increases
to about 2 at high temperatures. Other functional forms
have been suggested for the fluence dependence of swelling.
Because of the scatter of the data, swelling can equally well
be fitted to a linear equation with an incubation period
during which voids are absent:"

AV
N @ bt — (Pt),, (19.12)
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Fig. 19.2 Void size (a) and number density (b) in fast reactor irradiated austenitic stainless steel as a func-
tion of fast-neutron fluence and irradiation temperature. [After T. T. Claudson, R. W. Barker, and R. L.

Fish, Nucl. Appl. Technol.,, 9: 10(1970).]
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Fig. 19.3 Effect of irradiation temperature on swelling of
type 304 stainless steel at a fluence of 5 x 1022 neutrons/
em?. s, transmission electron microscopy. ¢, immersion
density. [ After S. D. Harkness and Che-Yu Li, Met. Trans.,

2: 1457 (1971).]

The incubation period, (dbt),, is of the order of 10%?
neutrons;em? and is believed to represent the neutron dose
needed to produce enough helium to permit void nuclea-
tion to proceed. The induction period may also be required
to build up a sufficient density of interstitial loops to allow
the preferential absorption of interstitials by dislocations to
sufficiently bias the point-defect population in the metal in
favor of vacancies so as Lo permit vacancy agglomeration
into voids.

Neither of the above empirical formulations of the
fluence dependence of void swelling indicates saturation
(i.e., leveling off) of this phenomenon.

19.2.4 The Effect of Cold Work

Cold work, which increases the density of network
dislocations, has a significant effect on the swelling charac-
teristics of austenitic steels. Up to a point, cold working
improves the resistance of steel to swelling, as is shown by
the smaller swelling of 20% cold worked type 316 stainless
steel compared with the solution-treated (i.e., annealed)
material (Fig. 19.5). Excessive cold work may not be
beneficial, as indicated by the curve for type 304 stainless
steel in Fig. 19.5. For this steel, two swelling peaks are
observed. The low-temperature hump is associated with
normal void formation in a metal of constant microstruc-
ture. The high-temperature peak is probably due to the
instability of the dislocation network introduced by cold
work. Above 600°C extensive recovery and recrystallization
occur in the steel, and large segments of the microstructure

are free from dislocations. Voids easily form in these zones
and are responsible for the second hump in the swelling
curve for type 304 stainless steel. The dislocation structure
introduced by cold working of type 316 stainless steel
appears to be more stable. The major difference between
these two steels is the 2 to 3% molybdenum addition to
tvpe 316 stainless steel. This alloying element can suffi-
ciently reduce the mobility of dislocations (by pinning) to
diminish the recovery pr(;(-ess.

19.2.5 KEffect of Precipitates

The effect of alloy composition is even more dramati-
cally exhibited in the swelling behavior of nickel and the
high-nickel-content alloy Inconel (Fig. 19.6). Niekel with
0.4% impurities swells considerably less than high-purity
nickel, and Inconel actually densifies during irradiation.
The excellent swelling resistance of Inconel is probably due
to the fine Ni;Nb precipitate that is present in this
material. This precipitate particle is coherent, which means
that its lattice constant is close to that of the matrix, and
the precipitate-- matrix interface is continuousty honded. It
will be shown later thal coherent precipitates aet as
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Fig. 19.5 Effect of cold work (CW) on the swelling behavior of austenitic stainless steels. The curves for
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Fig. 19.6 Swelling of high-purity nickel, nickel of 99.6%
purity, and Inconel (73% Ni—17% Cr—8% Fe) at 425°C.
[After J.J. Holmes, Trans. Amer. Nucl. Soc., 12: 117
(1969).]
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recombination sites for vacancies and interstitials and thus
contribute to reducing swelling. Another way that a
dispersion of fine precipitate particles in an alloy reduces
swelling is by impeding dislocation climb (i.e., they act in a
manner similar to molybdenum in type 316 stainless steel).
Another nickel-based alioy whose microstructure contains a
fine dispersion of coherent precipitates is Nimonic PE16.
Titanium and aluminum are added in equal amounts to this
alloy, and the precipitates have the composition Ni;(TiAl).
This alloy shows less swelling than does type 316 stainless
steel at high fluences.

19.2.6 Empirical Void Swelling Formulas

In view of the rudimentary state of the theory of void
formation in alloys, empirical equations are used to account
for the effects of void swelling in fuel-element performance
estimates. The equations used in current core-design studies
reflect the influence of the primary variables of tempera-
ture and fluence and the degree of cold work of the alloy.
For type 316 stainless steel,” the swelling equation for
solution-treated steel is

évx(%) - (bt x 10722)2-05 271007807 (T — 40)1071° |

exp (32.6 —5100/T — 0.015T) (19.12a)
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and for 20% cold-worked steel is

% (%)=9.0+107° (6t)' ** [4.028 —3.712 x 107

X (T—273) + 1.0145 x 10 (T — 273)?
— 7879 x 10% (T —273)%]
where § = T — 623°K.

(19.12h)

19.2.7 Interstitial Loops

The qualitative model of swelling described earlier in
this section, the quantitative theories discussed later in this
chapter, and electron-microscope observations of irradiated
steels all indicate that the nucleation and growth of
interstitial dislocation loops accompanies and may even
precede void formation. In the fcc structure of austenitic
stainless steel, the loops that form first are faulted and lie
on {111} planes in the lattice |Figs. 18.4(¢) and (d) and
Fig. 18.5(a)|. Unfaulting occurs when the faulted loop
grows to a size at which it is unstable with respect to a
perfect loop (the critical loop size for unfaulting is given hy
equating Eq. 19.6 for faulted loops with b =a, /3% to the
similar equation for perfect loops, wherein b =a, ;2% and
¥sf = 0). Unfaulting is very slow at temperatures below
~550°C but may bhe assisted by the passage of glide
dislocations over the faull or by interaction of the growing
faulted loops with each other. The unfaulted loops |shown
in Fig. 18.5(b)] are capable of conservative motion along
their glide cvlinders and soon become indistinguishable
from (and augment the density of} the original dislocation
network of the allov. At low temperatures (~500°C), loop
densities are approximately ten times greater than void
densities, and the loop diameters are about two to five
times the average void diameter.

For type 316 stainless steel, Brager and Straalsund'®
give the empirical formulas:

o+ pn = 107 (Dt x 1072 )F exp [G(T)) (19.13)
where
13750
F(T) = 31.07 — 0.0145T — >0, (19.14a)
7
G(T) = —47.7 + 0.0193T + 259170 (19.14b)

T

The fraction of the total dislocation density which consists
of network dislocations is

Px

L = [l +exp0.11(715—T)]}
oL+ P i pl ( ”

(19.15)
In these formulas, p; and py denote the dislocation
densities (in centimeters of dislocation line per cubic
centimeter of solid) as faulted loops and network disloca-
tions, respectively; py includes the contribution of perfect
loops, and T is the temperature in K.

Equations 19.13 and 19.15 are plotted in Fig. 19.7. For
T < 500°C the dislocation population is dominated by
faulted loops, but above 500°C the faulted loops rapidly
disappear and only network dislocations remain. The
network dislocation density decreases with increasing tem-
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Fig. 19.7 Dislocation density in solution-treated type 316
stainless steel. [ After Ref. 10.]

perature because of recovery of the dislocation structure
(i.e., mutual annihilation of dislocations of opposite sign or
glide out of the specimen).

The average diameter of the faulted loops is correlated
by

R, =7;4(<m x 1029 M exp |HT)) A (19.16)
where
H(T)=-—6.31 + 0.00262T + 3060 (19.17a)
J(T) = 23'89_0'0071T—9—(’)I‘4_0 (19.17h)
The faulted-loop number density is given by
Ny =10"% (bt X 10722)%-53 exp [L(T)] (19.18)
where
0
L(T) = —203.5 + 0.116T + 8590 (19.19)

T

The loop characteristics according to Egs. 19.16 and 19.18
are shown in Fig. 19.8.

The preceding recitation of the experimental observa-
tions pertaining to void and loop formation in stainless steel
illustrates the many different and often poorly defined
factors affecting the void-swelling process. It is entirely
possible that not all of the variables have been discovered.
Consequently, it is unlikely that an accurate and compre-
hensive theoretical model of this process will be developed,
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Fig. 19.8 Graphs of equations correlating the size and density of the faulted interstitial loopsin type 316
stainless steel for various temperatures and neutron fluences. (After Ref. 10.)

and fuel-element performance predictions will be forced to
rely on empirical correlations for LMFBR design. However,
theoretical models of the process are valuable because they
offer guidance for experiments and elucidate the factors
that may prevent or at least retard void growth in cladding
materials.

Void-formation theories usually divide the overall pro-
cess into distinct nucleation and growth phases, models for
which are presented in the following two sections. Predic-
tion of the evolution of the loop and void distribution
functions with irradiation time requires coupling the basic
nucleation and growth laws into point defect, loop, and
void conservation statements. Progress in this aspect of void
swelling theory is reviewed in Sec. 19.6.

19.3 NUCLEATION OF VOIDS

Nucleation of voids refers to the rate at which tiny
embryos of these defect clusters appear in the solid. Once
nucleated, the embryos tend to grow and are safe from
destruction. Nucleation and growth are often treated as
sequential steps in the overall process of void formation.
Supersaturation of the solid with point defects is a
prerequisite to both nucleation and growth, but a higher

supersaturation is required to force nucleation than to
continue growth of existing embryos.

The most common example of nucleation is the
condensation of water vapor in air. If the partial pressure of
water in dust-free air is slowly increased bevond the
equilibrium vapor pressure, nothing happens until the
supersaturation (i.e., the ratio of the partial pressure to the
vapor pressure) attains a value of about 5 to 6. At this point
a fog, which corresponds to nucleation of small liquid
droplets, appears. The supersaturation of the gas phase falls
abruptly at the onset of nucleation, and the newly born
droplets consume the remaining excess water vapor at a
purely diffusion-limited rate until the equilibrium vapor
pressure in the gas phase is attained. Formation of voids
and loops in solids may not be as clearly divisible into
nucleation and growth phases because in this case genera-
tion of point defects acts to maintain the supersaturation.
Nucleation of new voids and loops may proceed in parallel
with the growth of existing ones.

Nonetheless, nucleation and growth processes can be
analyzed as individual phenomena, the rates of which are
functions of the point-defect supersaturations, the helium
content of the solid, and the temperature. After the basic
rate equations have been derived, simultaneous operation of
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the growth and nucleation processes can be treated by use
of the appropriate conservation statements for voids, loops,
and point defects in the solid. When nucleation precedes
growlh, the conservation equations are considerably simpli-
fied, and most theories of void formation in metals have
adopted the nucleation-followed-by-growth approach.

As with the condensation of water. nucleation of voids
and loops in metals can be classed either as homogeneous or
heterogeneous. Homogeneous nucleation refers to the
buildup of small clusters by chance encounters of individual
point defects executing random walks in the solid. The
stability of these elusters relative to the individual point
defects of which they are composed (i.e., voids contain
vacancies and perhaps gas atoms whereas loops contain
interstitials) is the driving force for nucleation. None of the
structural features of the solid are needed to cause
agglomeration of the point defects.

Heterogeneous nucleation refers to the appearance of
voids on distinct struetural features of the solid. In water
condensation, for example, dust particles provide heteroge-
neous nucleation sites. In metals the heterogeneities that
may accelerate void nucleation include preexisting gas
bubbles (containing either impurity gases in the as-fabri-
cated metal or irradiation-produced helium or hydrogen
which has precipitated into equilibrium bubbles prior to
nucleation of voids), incoherent precipitate particles, and
dislocations. The depleted zones created in the collision
cascades (Sec. 17.10) can also act as heterogeneous nuelea-
tion sites for void formation.

There is no general consensus on the predominant void
nucleation mechanism. The importance of homogeneous
nucleation vis-a-vis heterogeneous nucleation has been
debated since irradiation-produced voids in metals were
first discovered (Refs. 4, 5, 11, and 12).

Nucleation of voids in the depleted zones formed in the
collision cascade is unlikely because of the rapid thermal
annealing (and resulting low concentration) of these zones
at the peak swelling temperatures in stainless steel (see
Sec. 18.5). Furthermore, irradiation of metals by electrons
results in copious void formation, even though depleted
zones are not formed by this type of bombarding particle
(Sec. 18.5).

It has not been possible to unequivocally determine the
conditions under which heterogeneous nucleation of voids
on second-phase particles is important. Bloom'' has found
that when the void concentration is low (either by
combination of low fluence at low temperature or high
fluence at high temperature) the voids are often associated
with dislocations or precipitates. At constant fluence Brager
and Straalsund'® observed what appears to be homo-
geneous nucleation at low temperatures, whereas at high
temperatures the voids were fewer in number and attached
to precipitates. Nevertheless, the idea that a fixed humber
of heterogeneous sites is responsible for all void nucleation
is unacceptable on two counts. The concept predicts that
the void concentration should be (1) limited by the number
density of nucleation sites in the metal and (2) independent
of irradiation temperature. Neither of these expectations is
satisfied by void formation in stainless steel.

All studies of void nucleation in irradiated metals agree
that the presence of helium in the solid profoundly affects

the nucleation process, although helium is not a prerequi-
sile for nucleation. Neutron-irradiation and ion-bombard-
ment experimenls in which helium gas is expressly pre-
injected into Lthe sample show a larger density of voids than
experiments in which helium is totally absent (ion bom-
bardment) or bhuilds up continuously during irradiation
(neutron irradiation). The incubation fluence of ~10%2
neutrons em® (Eq. 19.12) may be the time needed for
sufficient transmutation helium to be produced by irradia-
tion to cause void nucleation. Alithough the void density is
markedly increased by the presence of helium, the total
swelling of the metal is unaffected.'® Typically, ~0.1% of
the free vacancies produced by the displacement process in
a fast-neutron flux end up in voids (see problem 16.1 at the
end of this chapter). The remaining 99.9%. either recombine
or are removed at sinks. The presence of helium does not
alter this partitioning of the vacaneies. According to
Eq. 19.10, if AV/V is to remain constant even though N
increases, the average void size must decrease. The explana-
tion for this observation is that the high void densities in
experiments with preinjected helium provide more effective
traps for vacancy capture, thereby reducing the vacancy
supersaturation and slowing down the rate of growth of the
embryos.

In ueutron irradiation there is no way of turning off the
helium production as a means of controlling void forma-
tion. One can at best hope to understand the mechanism by
which helium influences void nucleation in order to be able
to predict void behavior at fluences as yet unattainable by
neutron-irradiation tests.

The details of the processes by which helium affects
void nucleation are not known. The mechanism may simply
be a matler of stabilizing embryo voids that have nucleated
without the aid of gas atloms and preventing collapse of the
embryos to vacancy loops. If such collapse occurs, the fate
of the loop is determined—because of the preferential bias
of dislocations of any sort for interstitials, the vacancy loop
will collect more interstitials than vacancies and will be
destroyed. However, it is more likely that helium is
intimately involved in the nucleation process, probably by
precipitating simultaneously with vacancies and interstitials
to form embryo voids that are partially gas filled. Whether
or not this role of helium converts a homogeneous
nucleation process to a heterogeneous one is a matter of
semantics. If, however, the helium first migrates to and is
trapped by imperfections in the solid (e.g., precipitates) and
then small voids form by accretion of vacancies to these
bubbles, the nucleation process is clearly heterogeneous.

Although void nucleation probably occurs by a mixture
of homogeneous or heterogeneous processes, each assisted
by helium, only homogeneous nucleation has been treated
guantitatively. Homogeneous nucleation of voids in metals
is not simply a matter of applying classical nucleation
theory to a new system. Classical theory, which was
developed to explain liquid-droplet formation from super-
saturated vapor of condensible gases, has been applied to
many precipitation processes occurring in solids. However,
in all nucleation problems that have been treated by
classical theory, growth or shrinkage of small clusters
occurs by exchange of a single species between the embryos
and the supersaturated medium. Void nucleation, however,
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involves the exchange of at least two species, namely, the
vacancy and its antiparticle the interstitial, between the
clusters and the lattice. A void can grow either by adding a
vacancy or by releasing an interstitial, it can shrink by
adding an interstitial or by emitting a vacancy. Moreover, if
helium is ivolved in the nucleation process, three species
must be considered in the shrinkage and enlargement
processes which contribute to homogeneous nucleation.

In the remainder of this section, homogeneous nuclea-
tion of voids from a matrix containing arbitrary super-
saturations of both vacancies and interstitials is described.
Progress in incorporating helium into the nucleation process
is considered brieflv: nucleation of interstitial loops is
treated in Sec. 19.4. The bulk concentration of vacancies
and interstititals, which drives the nucleation processes, is
assumed to be determined by point-defect balances that
consider all sources and sinks of point defects in the solid,
as shown in Sec. 19.5.

19.3.1 Homogeneous Nucleation of Voids

Homogeneous nucleation theory begins by deducing the
equilibrium void distribution function, N®¥(m) (where m is
the number of vaeancies in a void), which is developed by a
supersaturation S, = C,/CSY of vacancies in the solid. The
theory then considers the nonequilibrium situation of
arbitrary vacancy and interstitial supersaturations in which
there is a net flux, 1, of voids from one size to the next
larger size. The resulting equation for [ {which is the desired
nucleation rate) is solved with the aid of the equilibrium
distribution, from which certain coefficients appearing in
the nonequilibrium equation are obtained. The theory of
homogeneous nucleation of voids in the absence of gas
atoms was developed simuttaneously and independently by
Katz and Wiedersich' % and by Russell.'®

19.3.2 The Equilibrium Void Distribution
Function

When there is no vacancy supersaturation (S, = 1), the
equilibrium concentration of vacancies in the solid is given

by
Ce% = N, exp{— i)
v S kT

where Ny = 1/£2 and is the number of atom sites in a unit
volume of solid and €, is the energy of formation of a
vacancy. Even in this situation there are some small voids
(i.e., clusters containing more than one vacancy). The
equilibrium fraction of divacancies, for example, was
derived in Sec.6.4 and is given by Eq.6.22. Similar
calculations can be used to determine the concentrations of
voids containing three or more vacancies. For the particular
case of unit supersaturation, the equilibrium concentration
of clusters decreases rapidly as the cluster size increases;
i.e., for S, =1, N®%(m) is a rapidly decreasing function of
m.

When the vacancy concentration is maintained at a
value greater than C{9 (e.g., by irradiation), it is also
possible to compute an equilibrium void distribution
function. For S, > 1, however, N®*9(m) is not a monotoni-
cally decreasing function of m. Rather, it passes through a

(19.20)

minimum at some cluster size and thereafter increases
rapidly with m. This equilibrium distribution cannot be
attained 1n practice because it implies large concentrations
of large voids. In spite of this practical difficulty, the
equilibrium distribution is useful because it permits estima-
tion of certain properties of void growth and shrinkage
which are needed for analysis of the actual nonequilibrium
case.

We therefore determine the hypothetical void distribu-
tion function N®9(m) arising from a supersaturation S, of
vacancies. The vacancies are in equilibrium with the entire
void population, or in the language of chemical thermo-
dynamics, the reaction

my <* v, (19.21)

is at equilibrium for all values of m. llere v denotes a
vacancy and vy, is a void composed of m vacancies.

Since a situation of total thermodynamic equilibrium is
envisaged, the interstitials present in the solid rust also be
in equilibrium with the vacancies according to the reaction

v+ i~ null (19.22)

where i denotes an interstitial and null means an atom on a
normal lattice site. The equilibrium concentration of
interstitials in a solid wherein the vacancies are also at
equilibrium is

Ce4 = N, exp (ﬁ k‘T) (19.23)
where ¢; is the energy of formation of an interstitial.
Equation 19.22 requires that the product C,C; be a
constant, and this constant must be equal to C{4C{“. Or,
the concentration of interstitials in equilibrium with a
supersaturated solution of vacancies is given by

Lo N (g
G s P Uk

The interstitials are undersaturated by an amount equal
to the vacancy supersaturation S,. Because of this fact and
because of the high formation energy of interstitials, the
interstitial concentration in the matrix containing a super-
saturation of vacancies is negligibly small.

The distribution function N®%(m) is obtained by
applying the criterion of chemical equilibrium to reaction
19.21. Specifically, Eq. 5.14 becomes

(19.24)

My = i {19.25)

where ., is the chemical potential of a vacancy and u,, is
the chemical potential of a void of size m. The chemical
potentials are related to the total Gibbs free energy of the
system by Eq. 5.50:

oG

N m) (19.26)

Hm
where the partial derivative is taken with temperature, total
pressure, and concentration of clusters of sizes different
from m held constant. By analogy to the cases of
monovacancies (Eq. 6.11) or divacancies (Eq.6.16), the
total Gibbs free energy of a system containing a distribu-
tion N°9(m) of clusters is given by
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G- Gy + LN9m) gy — KT L In Wy, (19.27)
m m

where Gy i+ the free energy of the perfect lattice and g, is

the Gibbs free energy, cr reversible work, required to form

a void of size m, whichis

” _ - L e
€m ~ hm Tsm €m ¥ PVm ISm

Here €, is the energy required to form a void of m
vacancies, s,, is the excess entropy associated with this
process, and vy, is the volume change due to introduction
of a void in the solid (v,, = m{2if local contraction around
an isolated vacancy in the lattice is neglected); p is the
hydrostatic stress in the solid. Following the usual simplifi-
cations in dealing with point-defect equilibria, the last two
terms on the right are neglected, and g, reduces to €,,.
However, it should be noted that the presence of the term
pv,, in the above expression provides a means whereby the
state of stress of the solid can influence the nucleation rate.

For large m, the energy of the void is assumed to be
adequately represented by the surface energy, which may
be obtained by combining Eqs. 19.1 and 19.2:

g e, > (367620)% ym® (19.28)

Equation 19.28 represents the capillarity model of
homogeneous nucleation, in which the energy of a cluster is
related to a macroscopic parameter, namely, the surface
tension. Equation 19.28 has no meaning for clusters of one
or two vacancies. The energy required to create a mono-
vacancy, is the vacancy formation energy €., and not the
right side of Eq.19.28 with m=1. This inability to
accurately describe the energy of clusters too small to be
treated as droplike entities but too large to be considered in
atomic terms is common to all applications of nucleation
theory, including the present one.

The last term in Eq. 19.27 is the temperature times the
configurational entropy (or entropy of mixing}. It cau be
obtained by calculating the number of ways in which voids
can be distributed in a crystal containing N lattice sites per
unit volume. To perform this computation, we make the
assumption that the solution is dilute in voids and
vacancies, so the combinatorial numbers W, can be
calculated independently of each other. This problem has
already been treated in Sec. 6.4 for the particular case of
divancies (m = 2), and similar methods are applied here.
However, the problem is simplified by requiring that the
clusters be spherical, which eliminates the orientation
factors that entered into the divacancy calculation. We
begin with a unit volume of perfect lattice and withdraw
voids of size m sequentially until there are N°d(m) of these
holes in the solid. The size m is fixed during this process.
The center of the first void can be removed from any of the
N, available sites, which leaves Ng — m sites from which the
second void may be withdrawn. The third void is removed
from the N, — 2m remaining sites, etc. The product of each
of these factors gives the number of different ways of
removing N““(m) voids of size m from the solid, or

N(Ng — m) (Ng — 2m) . .. [Ny~ [N®%(m) — 1|m}

“! = A

m [N““(m)]!

where the denonminator serves to eliminate permutations
among the identical voids (changing the order in which

particular voids are removed does not produce a distinguish-
able state). The quantity mN®9(m) is factored from the
numerator of the above equation, and the top and bottom
are multiplied by [(Ng/m) - N°9(m)|!,

mN¢90m)y (N /m)!

Wi = mﬂn) = Nea{m}]! [N®9(m) ]!

(19.29)

Substituting Eq. 19.29 into Eq. 19.27, using Stirling’s
formula for the factorial term, and taking the derivative as
required by Eq. 19.26 yields

Ned (m)]

;.lm‘“em‘rlen[ N,

(19.30)

In obtaining this result, we have neglected mN““{in)
compared to Ny because the void concentration is low. For
monovacancies (m = 1), Eq. 19.30 reduces to

. C,
My = €y + KT In (N:)

The vacancy-formation ecnergy is eliminated from
Eq. 19.31 by Eq. 19.20. This procedure leads to

(19.31)

(19.32)

My = kT In (C(i\;;) = kT In 8,
Having determined u,, and u, in terms of the distribution
function N®9(m) and the vacancy supersaturation S,, we
determine N®9(m) by substituting Egs. 19.30 and 19.32
into the criterion of chemical equilibrium, Eq. 19.25, and
relating €,,, to m by Eq.19.28. The equilibrium void
distribution function is found to be

N®9(m} = N exp (mIn S, — £m™) (19.33)

where

e 2y T
£ = (367€2°) KT (19.34)
is dimensionless and of magnitude between 10 and 30.

Equation 19.33 is the result of purely thermodynamic
arguments and is independent of the mechanism by which
the equilibrium void distribution is established. Mechanistic
information of the nucleation process can be extracted
from Eq. 19.33 if the distribution is regarded as a dynamic
balance of the rates of vacancy capture by a cluster and
vacancy emission from the cluster. At equilibrium the rates
of these two processes are equal, and, since the rate
constant for the forward (capture) process is known, the
rate constant of the reverse process can be determined from
Eq. 19.33.% Equilibrium is attained if the rate at which
clusters of m vacancies capture single vacancies is equal to
the rate at which elusters of size m + 1 emit vacancies, or

By (m) N Ym) = a, (m+ 1) N“(m+ 1) (19.35)

*This procedure is an example of the application of the
principle of detailed balancing, which has previously been
invoked to determine the climb velocity of an edge
dislocation (Egs. 16.51 and 16.52) and to calculate the rate
of condensation of UO; on the cold side of a pore
(Eqs. 14.14 and 14.15).
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where $3,(m) is the rate of vacaney capture by a size m
cluster and «,(m) is.the rate of vacancy emission from a
size m cluster.

A formula similar to Eq. 19.35 applies to interstitial
caplure and emission from a cluster, but, hecause of the
very small interstitial concentration at equilibrium, this
relation is unnecessary. The ratio N°4(m)/N9(m+ 1) is
obtained from Eq. 19.33.

N9(m) 1 (2 . !x,)
e = — exp{=&m

. 19.36
N%m+ 1) 8, 3 ( )

In deriving Eq. 19.36, the approximation |1 + (1/m)]» ~
1+ (2/3m) has been made.

If the clusters are assumed to be spherical, the
vacancy-capture rate is expressed by the rate constant for
point-defect absorption by spherical sinks derived in Secs.
13.4 and 13.5. Specifically, §,(m) is given by the product
of the rate constant k of Eq. 13.96 and the bulk vacaney
concentration (. In the preseut application the void
embryos are so small that the capture rale is of the mixed
control type in which both diffusion and reaction-rate
limitations are of comparable magnitude. 'Thus

17RD, Cy

fu(m) = —

- 19.3
T+ (ay /R) (19.37)

where a,, is the Jattice constant and D, is the vacancy
diffusion coefficient. If wunity in the denominator is
neglected (which corresponds to complete reaction-rate
control of the capture kinetics), Eq. 19.37 reduces to the
formulas used in Refs. 14 and 15. However, Eq. 19.37 is
preferable to the reaction-rate-limited form since a, /R is
never larger than unity. In either ease, R in Eq. 19.37 is
related to the eluster size m by Eq. 197, and an approxi-
mate expression for f.(m) fora,/R <1is

Be(m) = a, D, C,m" (19.38)

Using Eqgs. 19.36 and 19.38 in Eq. 19.35 gives the emission
rate constant

ap(m+ 1) = a,D,CE9m™ exp (,;Zz_gm' l”) (19.39)

The preceding formulas show that the vacancy-capture rate
increases with cluster size, whereas the vacancy-emission
rate decreases with m. Once a cluster has managed to reach
a certain minimum size, its propensity to grow outweighs
its tendency to shrink, and continued exXistence and
development of the embryo into a full-fledged void is
assured. Determination of the critical size heyond which
growth is favored is the next task for homogeneous
nucleation theory.

19.3.3 The Nonequilibrium Void Distribution
Function, the Nucleation Rate, and
the Critical Cluster Size

The nucleation current I represents a rate of flow of
voids in the phase space of cluster size (as opposed to real
space, wherein the flux would be denoted by J). The
current L is the net rate at which clusters of size m grow to
clusters of size m + 1 per unit volume. It is analogous to the
stowing-down density in nuclear reactor analysis, which

represents the rate at which neutrons pass a particular
energy (i.e., the flux of neutrons in energy space). Since
small void clusters grow by capturing vacancies and shrink
either by capturing interstitials or emitting vacancies, the
nucleation current is the difference between the rate at
which clusters pass from size m to size m + 1 and the rate at
which clusters of size m + 1 are reduced to size m:

I =Bv(m) N(m) —a,(m+ 1) N(m + 1)

—Bi(m+ 1) N(m+1) (19.40)

where N(m) is the void distribution function for the
nonequilibrium but steady-state case. The vacancies and
interstitials are supersaturated to arbitrary extents; thus C,
and C; are not related by a mass action formula such as
Eqg. 19.24. In addition, the void population represented by
the distribution N(m) is not in equilibrium with either the
vacancies or the interstitials in the solid. Therefore, N(m)
can only be determined by kinetic arguments.

Equation 19.40 is applied to the case in which the same
number of voids pass from size m to size m + 1 per unit
volume no matter how large m is. To maintain the situation
implied by this requirement, one imagines that some
mechanisim is available for destroyving large voids and
returning their component vacancies to the metal lattice. In
practice, we need not worry about the artificiality of this
device for maintaining the steady state; nucleation theory is
used solely to determine the ratio at which voids pass the
critical size that assures their continued existence. There-
after, the fate of the voids is determined by growth models,
which are formulated independently of the nucleation
model and provide the sources and sinks necessary to
establish the vacancy and interstitial supersaturations used
in the nucleation analysis.

The capture rates are assumed to be the same as those
used it determining the equilibrium distribution; §3,(m) is
given by Eq. 19.37 or 19.38. The rate at which a void
absorbs interstitials, [;(m), is given by either of these
equations with the subscript v replaced by i. The nucleation
rate depends on the ratio of the capture rates of interstitials
and vacancies by the voids, or hy

B _ DG

B, D,C,
The above ratio is called the arrival-rate ratio and is
independent of void size. It depends on the rates of
point-defect production and removal in the bulk solid.
These balances are considered in the section on growth. For
the moment, we assume that /8, is a specified constant
that is just a bit smaller than unity.

The vacancy-emission rate constant «, is assumed to be
the same as the one deduced for the equilibrium void
population, Eq. 19.39. The term in Eq. 19.40 representing
interstitial emission from a void has been neglected owing
to the very large formation energy of interstitials, which
renders Cf9 very small. Therefore, a formula of the type
given by Eq. 19.39 for interstitials would show o; >~ 0.

Elimination of a,(m + 1) from Eq. 19,40 by use of
Eq. 19.35 yields

(19.41)

eq X
I=03.(m) {N(m) —N(m + 1) [%(T(n:lﬂ +g—' } (19.12)
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where the ratio gi(m + 1)/8,(m) has been approximated by
Bitm)B.(m), which is a constant. We now define a funection
h(m) by

h{m) N%m) G

- — _— 9.4
h(im+ 1) N‘q(m+1)+ﬁy (19.43)

which is determined by Eq. 19.36 in conjunction with the
specified constant value of the arrival-rate ratio. The
solution of Eq. 19.43 is (see problem 19.2 at the end of this

chapter)
m-1 . ,
him)f N"m) B
ln[ N, ] 2 ln[N""(m' 1) + 5. (19.41)

m =0
Equation 19.44 is plotted in Iig. 19.9 for various arrival-
rate ratios and for irradiation conditions appropriate to fast
reactor cladding. The properties of nickel were used in
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Fig. 19.9 The function h(m) calculated from Eqs. 19.44
and 19.36 for various values of the arrival-rate ratio §3;/8,.
Physical properties for determining & from Eq. 19.34 are
for nickel at 900°K. The vacancy supersaturation S, is 430.
The dots indicate the location of the minima of h{m).
(After Ref. 14.)

preparing the plots, on the grounds that this pure metal

resembles stainless steel. The curve for 3;/8, =0 corre-

sponds to the equilibrium distribution given by Eq. 19.33.
Using Eq. 19.43, we find that Eq. 19.42 becomes

N(m) N(m+1)
h(m) h(m+ 1)

I=Bu(m) h(m)[

For sufficiently large values of m (i.e., m > 2 is sufficient),

the difference in the brackets of the above formula can be

approximated by a derivative, and
d(N/h)

I=—gh S

9.
dm (19.45)

Solution of Eq. 19.45 requires one boundary condition, but
an additional condition is needed if the heretofore un-
known nucleation rate I is to be determined as well as the
distribution function N(m).

The first requirement on the distribution function is
that it approach the equilibrium distribution function

Nm) at small m. This condition is based on the
supposition that very tiny voids capture and shed vacancies
so rapidly that they remain in equilibrium with the vacancy
supersaturation despite the net drain caused by the nuclea-
tion current b, Since it can he shown from Eq. 19.441 that
h = N asm-- 1, the first condition is

> 1lasm—1 (19.16a)

h
The second condition requires that there be no very large
voids in the system or that

N gasm oo (19.16h)

h

Integration of Eq. 19.45 between these limits yields
" dm NN
a0 ()
[ ﬁvh (Njh), h

o -1
. [ f ~dm ]
1 By(m) h(m)

This equation can he simplified by noting that the
function h(m) has a very sharp minimum at a c¢luster size
m,. (shown as dots in Fig. 19.9). The minimum becomes
broader as pg;/f, > 1. but, in view of the 16
order-of-magnitude range of the ordinate of INig. 19.9, the
minimum is still quite distinet. The integral in Eq. 19.45 is
determined primarily hy the behavior of h(m) near this
minimum. Consequently, §,(m), which is a slowly varving
funetion of m. is evaluated al m, and removed from the
integral and In h(m} is expanded in a Tayvlor series ahout
the minimum:

or

(19.47)

l!h(nf In [h(n H*t d’Inh ( )
" 1) = In ), 5 - m.)"
‘ 1M 2\ dm° /, m=me

where m, is defined hy

dinh
( dmi)mc -0

Substituting the series into Eq. 19.47 and integrating vields

2 %
l*[l (d In h) ] By(m,) h(m,) (19.18)

27\ dm?

The first factor on the right of Eq. 19.48 is called the
Zeldovich factor.

The void-nucleation rate is therefore determined by the
vacancy-capture rate of a critical-size void and the
properlies of the function h(m) near its minimum. The
complete void distribution function N(m) can be
determined, but it is of no utility since only the nucleation
rate is desired.

Nucleation rates calculated from Eq. 19.48 are plotted
in Fig. 19.10. The curves for g;i, =0 correspond to
classical nucleation theory applied to a single-component
svstem. It can be seen that inclusion of interstitials
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Fig. 19.10 Nucleation rate as a function of vacancy
supersaturation for various arrival-rate ratios. (After
Ref. 14.)

drastically reduces the nucleation rate. Increasing the
arrival-rate ratio from 0 to 0.98 reduces the nucleation rate
by six orders of magnitude. If §;/8, = 1, nucleation is
impossible because interstitials arrive at a void embryo as
fast as vacancies. The supersaturations on the abscissa of
Fig. 19.10 are obtained from the point-defect balances,
which will be considered in Sec. 19.5. An example of the
vacancy and interstitial concentrations expected in fast
reactor cladding is shown in Fig. 13.17. Although at a fixed
S, the nucleation rate increases with temperature, the
supersaturation at high temperature is greatly reduced from
what can be maintained at low temperature. At T = 700°K,
which is somewhal below the peak swelling temperature of
stainless steel, Fig. 13.17(a) shows that it is quite possible
to sustain a vacancy supersaturation of 10%  and Fig. 19.10
gives for this condition a nucleation rate of 10" voids cm™
sec'. Cladding examined after a year (107 sec) in-pile
would be expected to show a void density of ~10'* em™
which is of the correct order of magnitude. However, the
nucleation computation is highly sensitive to poorly known
parameters, such as the arrival-rate ratio p;/8,, and
properties, such as the surface tension of the solid. In
addition, the supersaturation is determined by the densities
and efficiencies of point-defect sinks, which are difficult to
estimate and in any case change during irradiation. In
general, homogeneous nucleation theory as outlined does
not predict as many voids as are in fact observed in
irradiated cladding, nor is it ahle to account for the cluster

incubation period that is also ohserved experimentally.* In
fact, the theory would suggest that voids should he
nucleated early in irradiation while the supersaturation is
high. The vacancy concentration decreases during
irradiation because of the growth of interstitial loops (loop
nucleation appears to precede void nucleation). The loops
augment the number of point-defect sinks in the solid and,
in so doing, reduce the supersaturation of hoth vacancies
and interstitials (i.e., during irradiation, the vacancy
concentration drops from one of the solid curves in
Fig. 13.17(a) to the corresponding dashed curve). It is
believed that the reason for the incuhation period observed
in swelling experiments is associated with the time required
to build up sufficient helium in the matrix.

19.3.4 Nucleation in the Presence of Helium

The preceding theory of void nucleation in a solid
supersaturated with vacancies and interstitials was hased on
the assumption that point defeets were capable of readily
moving between voids and the bulk solid. Extensions of
void nucleation theory to account for helium in the metal
have been advanced by Kalz and Wiedersich'® and by
Russell."’

Helium generated in the solid is much less mobile than
vacaneies and interstitials at the temperatures where void
formation is important. Moreover, once a helium atom has
been trapped by a void embryo, return to the matrix is very
difficult. Consequently, nucleation in the presence of
helium need not involve the simultaneous equilihration of
all three species (vacancies, interstitials, and helium atoms)
hetween the void embrvos and the bulk solid. A simpler
analysis of the effect of helium on void nucleation may be
constructed by regarding the helium atoms as immobile
nucleation sites to which vacancies and interstitials can
migrate to form void clusters. We visualize point defects
quickly moving to and from a distribution of embryo voids
which contains a fixed number of gas atoms.

The solid is also supposed to contain a distribution of
gas-atom clusters, M;, which is the number of gas-atom
clusters per unit volume composed of j helium atoms. The
total helium concentration in the solid

M= L M

i=t

(19.49)

at any lime during irradiation is determined by the helium
production rates discussed in Sec. 18.10. It is assumed that
nucleation of voids proceeds independently and
concurrently on each of the gas-atom cluster populations
characterized by M; nucleation sites per unit volume. All
these parallel nucleation processes are driven by the
prevailing vacancy and interstitial supersaturations. In
addition to the heterogeneous nucleation paths provided by
the helium clusters in the metal, the homogeneous
nucleation mechanism described earlier in this section still
occurs on the Ny lattice sites in the solid. The total
nucleation rate is the sum of the contributions of the

*There is an incubation period inherent in the theory,
but it is not as long as the incubation time for observed
void swelling in stainless steel (see Ref. 15)
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parallel processes of homogeneous and heterogeneous
nucleation:

I= Ihumu + E Ij (]950)

1=1

where Iy, mo is given by Eq. 19.48 with h(m) given by
Eq. 19.44 and N°%(m) by Eq. 19.33. Thus, we need only to
determine the heterogeneous nucleation rate I; on the M;
helium-atom clusters (each containing j helium atoms) per
unit volume. Each of the voids formed on these M; sites
contains the fixed number j of gas atoms but a variable
number m of vacancies. The void embryos that form on the
gas-atom clusters are described by the equilibrium
distribution functions:

N{9(m) = number of embryos per unit volume that
contain m vacancies and j gas aloms

Equation 19.33 gives the equilibrium distribution of voids
that contain no gas atoms (j = 0).

The equilibrium reactions that estahlish the distribution
Ny9(mj are

my = ij

where vp,; denotes a void consisting of m vacancies and j
gas atoms. In accord with the assuinption that the helium is
immobile, no chemical reaction expressing equilibration of
pas atoms hetween the voids and the bulk is written. The
criterion of chemical equilibrium for the ahove reactions is

MUy = My (19.561)

where u, is the chemical potential of a vacancy (Eq. 19.32)
and up is the chemical potential of a void with m
vacancies and j gas atoms. The latter is given by

G

Lo ————— 2
“m] ()N]eq(n]) ‘]95~)

where the total Gibbs free energy depends on both the
vacancy and helium-atom content of the voids:

G=Gy+ LY INYm) g —kTIn W] (19.53)
j m

where gp,; is the reversible work required to form a cluster
containing m vacancies and j helium atoms and k In Wy;; is
the configuration entropy due to this class of clusters. The
effect of helium on the nucleation rate is entirely contained
_ in these two terms.

"~ Following arguments similar to those applied to homo-
geneous hucleation on all lattice sites, the number of ways
of arranging Nj4 (m) voids on M,; sites is found to be

M kM, —1)... {M;—[Nf%m)—1]}
[NfA(m)]!
-~ M)y

Wi

[M; — Nfa(m)]! [Nf9(m)]!

Expressing W,,,; by the above equation and using Eq. 19.53
in Eq. 19.62 yields:

[
|

A
N7 9(m)

M = Bmj + KT In [T (19.54)

!

Next we determine g,;,;, the reversible work of forming
the vacancy gas-atom cluster from a solid which has no
vacancies but contains the j gas-atom clusters embedded in
the otherwise perfect lattice. The term gg,; consists of two
terms. The first is the work required to create a gas-free
void in the solid, which is given by Eq. 19.28. The second
represents the work required to move the helium from the
sol:d to the space inside the void. Since helium is nearly
insoluble in the metal, it has a natural tendency to escape
from the solid to the gas space of the void. Thus, we expect
that work can be recovered by reversibly transferring
helium from the solid to the void, or that this step reduces
the work requirement of void formation and consequentty
facilitates nucleation. The helium transfer operation is
performed in three stages to determine the free-energy
change:

1. Helium is withdrawn from solution to a gas container
at the equilibrium helium pressure corresponding to the
temperature and the total helium concentration of the
solid. This pressure is denoted by p.q.

2. The gas is expanded isothermally and reversibly to
the pressure at which the helium exists in the void.

3. The helium is transferred to the void.

Consider the free-energy changes that accompany each
of the above steps.

The first step, which is analogous to vaporization of a
liquid at its vapor pressure, involves no change in free
energy. Isothermal, reversible expansion of j atoms of un
ideal gas from pressure p., to pressure p provides a release
of free energy of the amount

KT In (‘iﬂ)
p

The third step involves no work and hence contributes
nothing to the free-energy change.

Assuming that the helium in the void obeys the ideal
gas law, we find the pressure p is given by

p (m&2) =3kT (19.55)

where mf is the volume of a void made up of 1 vacancies
each of which contributes a volume 2.

Determination of the equilibrium helium pressure, peq,
requires more information, Although helium is nearly
insoluble in metals, it is not completely so. The solubility
of a gas in a metal cau be analyzed by statistical mechanical
methods, as shown in Chap. 5 (see problem 5.9). Briefly,
the chemical potential of gas-phase helium is equated to the
chemical potential of dissolved helium (which is assumed to
be monatomically dispersed in the lattice). The partition of
gas-phase helium needed to compute the chemical potential
in the gas is due to translation only. The partition function
of dissolved helium is obtained by assuming that helium in
the lattice behaves as a three-dimensional oscillator. This
procedure yields

KT { hy 3(2frm”ek’l‘)1’ €g
R VLN LGN 20 Me® X 19.56
Peq =M . (kT) he exp (kT) (19.56)

where M/N; is the total atom fraction of helium in the
metal and €, is the energy difference between an atom of
gaseous helium and one in the lattice (i.e., the heat of
solution). If it is assumed ihat helium occupies
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substitutional positions in the metal lattice, €, very closely
represents the energy required to remove a metal atom
from a lattice and place it on the surface. This step provides
the opening into which a helium atom can fit. The bonding
between helium and the surrounding metal atoms is quite
small; so the entire energy requirement in the process is
consumed in removing the metal atom. Consequently, €,
should be approximately equal to the formation energy of a
vacancy in the metal, or €, = ¢€,. The vibration frequency v
in Eq. 19.56 is that of a helium atom on a lattice site and is
approximately 10'* sec™, my,_ is the mass of a helium
atom, and h is Planck’s constant.

Because ¢, is positive and large compared to kT, the
ratio p,q/M is also large. For the parts-per-million helium
concentrations encountered in LMFBR fuel-element
cladding, p., may be as large as 10® atm. It should be
emphasized that the helium in the cladding never exists as a
gas at the pressure p.q: it is either in the metal at
concentration M or in the void at pressure p. The
equilibrium pressure given by Eq. 19.56 appears solely as a
result of computing the work that could be extracted from
the process of transferring helium from the lattice to the
void if it were done reversibly.

Yy
STy
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W Ty,
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S EL

Accounting for the stabilizing effect of helium, the
reversible work to form a void embryo of m vacancies and j
gas atoms is

% ,
gmj = 47 (%) ym®— jkT In (E]Mkr;—g—z) (19.57)
where H is the coefficient of M in Eq. 19.56 (i.e., H is the
Henry’s law constant for the dissolution of helium in the
metal). It is a function of temperature only.

We now substitute Eq.19.57 into Eq.19.54 to
determine u,; and use the resulting equation and Eq. 19.32
for u, in Eq. 19.51. Solving for the equilibrium
distribution, we find

N9 (m) = M; exp [m InS, — tm®

. HMm2
+jkT ln( KT )] (19.58)

where £ is given by Eq.19.34. When j =0, M; = Ng and
Eq. 19.58 reduces to the equilibrium distribution for
gas-free voids, given by Eq. 19.33. Figure 19.11 shows the
negative of the argument of the exponential in Eq. 19.58
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Fig. 19.11 Plot of the free energy of void formation as a function of the number of vacancies (m) and the
number of gas atoms (j) in the void. Conditions: S, = 600, p., = 5000 atm, T = 500°C, vy = 1000 dynes/cm.

(After Ref. 17.)
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(which is sometimes called the free energy of void
formation) plotted as a function of m and j. The intercept
of this surface at j = 0 (no gas) corresponds to the §;/f, = 0
curve in Fig. 19.9. Gas atoms in the void reduce the energy
barrier for nucleation below the value characteristic of
gas-free voids. The saddle point on the surface shown in
Fig. 19.11 occurs at m =11 and j = 6. This plot, however,
does not consider interstitials, which are included in the
analysis in exactly the same manner as in the case of
homogeneous nucleation in the absence of gas.

The remaining analysis is straightforward. The arrival
rates [, and f; and the vacancy emission rate o, are
independent of the presence of gas atoms in the void. As
long as the helium is immobile and does not move among
the voids, Eq. 19.40 is valid if the subscript j is appended to
both 1 and N in this formula. Only the function h(m),
which depends on the equilibrium void distribution
function, changes explicitly. In place of Eq. 19.43, we write
for gas-containing voids

m-1 q
ol Y [N (m') ﬂ]
ln[ M = ’ In [Nﬁ——fq(m - 1)+ﬁv (19.59)
m =0

For a specified value of j, the minimum of the function
hj(m) occurs at m.; vacancies, and the nucleation rate on
the population of j helium-atom clusters is given by the
analog of Eq. 19.48:

2 1
1 {d°In h; ‘
b [E?r (ﬁ_"f' )m(.,.] Be(mg) hj(mg)  (19.60)

1020

To evaluate the nucleation rate on the gas-atom clusters
in the metal, we must estimate the distribution of the
available gas (M atoms/cm®) among the various cluster
sizes. [n principle, the distribution M; could be obtained by
considering independently the problem of helium-atom
agglomeration in the cladding in much the same way that
fission-gas precipitation into bubbles in the fuel was
analyzed in Chap. 13. However, for simplicity, the
distribution

Mj - M'I(i‘H )2

is assumed. The distribution must also satisfy Eq. 19.49.
Figure 19.12 shows the results of calculations based on
Egs. 19.60 and 19.61 for M equivalent to 10 ppm helium
(which is the concentration that would be formed in
staintess-steel cladding following irradiation to a fluence of
~5x 10%? neutrons/cm?). The vacancy supersaturation
scale is divided into regimes expected in a reactor and in an
ion-hombardment experiment. It can be seen from the
graph that, for all supersaturations expected in-pile,
heterogeneous nucleation on helium-atom clusters far
outweighs homogeneous nucleation. This behavior
constitutes theoretical confirmation of the often ohserved
enhancement of void nucleation by helium. The relative
importance of homogencous and heterogeneous nucleation
shifts according to the helium concentration because
hhomo(m) is proportional to Ng, whereas hj(m) is
proportional to M;. At low fluence homogeneous
nucleation is dominant hecause there is not enough helium
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Fig. 19.12 Void-nucleation rates (I;) on helium-atom clusters and the homogeneous nucleation rate
(Ihomo) as functions of vacancy supersaturation at 500°C. Total helium content of 10 ppm. (After

Ref. 16.)
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to drive heterogeneous nucleation. However, since I 0 18
quite low, no voids are observed until sufficient helium has
been generated by transmutation reactions to give the high
hieterogeneous nucleation rates shown in Fig. 19.12. Thiy
incubation period is equivalent to a fluence cf ~ 1077
neutruns/‘vm2 for stainless steel.

19.4 NUCLEATION OF INTERSTITIAL
DISLOCATION LOOPS

The microstructure of irradiated steel is found to
contain a high concentration of interstitial dislocation loops
in addition to voids. In Sec. 19.3, it was shown that void
nucleation is driven by the supersaturation S, of vacancies
aided by a slightly greater rate of vacancy than interstitial
absorption by the voids, which is expressed as (3;/8,)vqids
<1. Nucleation of loops because of interstitial
supersaturation §; is possible because more interstitials than
vacancies arrive at all dislocations in the solid, or
(By/Bihoops < 1. The fact that the relative vacancy and
interstitial arrival rates are inverted for voids and loops is a
consequence of the small but extremely important
preference of dislocations for interstitials. Formally,
interstitial loop nucleation can be treated in precisely the
same manner as void nucleation, but the very large
formation energy of interstitials (¢; =4 eV) compared to
that for vacancies (¢, =~ 1eV)} profoundly alters the
quantitative aspects of the nucleation process. Another
important difference between void and loop nucleation is
that the latter is not subject to enhancement by helium in
the solid. Growing loops are not sinks for inert gas atoms,
as are voids.

19.4.1 Loop Nucleation by Classical Theory

The methods applied to predict void-nucleation rates in
the preceding section can be utilized in toto forloop nuclea-
tion simply by exchanging the subseripts i and v in all of the
formulas and by replacing the void energy given by
Eq. 19.3 by the energy of a faulted loop, Fq. 19.6. Such a
calculation has been performed by Russell and Powell.'®
They found that the critical cluster for loop nucleation
contains only two or three interstitials, even in the presence
of vacancies. The reason for this result can be explained as
follows. The equilibrium ctuster distribution (i.e., the
distribution for which clusters, vacancies, and interstitials
are all in equilibrium) is given by the analog of Eq. 19.33:

(19.61)

N €t
N9 {m) = Ng exp (m In Si—ﬁ>

where N®%(m) is the number of loops per unit volume
comprised of m interstitials; §; is the iuterstitial
supersaturation

C; . €; R
S, - (,?‘(—l = QC; exp (?’r—) (19.62)
and €, is the work required to form a loop of size m from
a perfect solid. Application of the principle of detailed
balancing to the interstitial-capture and -emission rates for a
loop leads to 2 formula similar to Eq. 19.35:

Bim) N9(m) = q;(m + 1) N*“(m+ 1)  (19.63)

where §;(m) is the rate at which a loop of size m captures
interstitials and a;(m) is the rate at which the loop emits
interstitials. With the aid of Eq. 19.61, 19.63 can be solved
for the interstitial-emission rate

afm+ 1) = [5,({:1) exp (Fq'f }:i (',',") (19.64)
The interstitial-capture rate §{(m) is a slowly varying
function of m, and the primary size dependence of the
cmission rate is contained in the exponential term in
Eq. 19.64. In estimating ¢,,, Russell and Powell'® neglect
the stacking-fault energy in Eq. 19.6 and use a slightly
different formula for the strain energy of the loop (i.e., the
first term on the right of Eq. 19.6). The loop energy they
used is given hy

€ = 500 m* kJ/mole (19.65)

for m>1 and €, = ¢ =420 kJ/mole for the formation
energy of asingle interstitial. Using this energy formula and
a typical interstitial supersaturation of 10' 7, we find the
emission rates from di- and tri-interstitials to he

a;(2) =3 x 10% (1)
@(3) > 6 X 10° §3(2)

Since $;{1) = B;(2), ¢;(2) is some 9 orders of magnitude
larger than a;(3). In other words, the triinterstitial has
virtually no tendency to shed interstitials and is therefore
the critical cluster for loop nucleation.

Application of classical nucleation theory (even when
modified to account for point defects of the opposite sign)
is of dubious validity when the critical cluster contains only
two or three particles. First, the use of a eluster energy
formula based on the strain energy of a circular dislocation
loop as calculated from elasticity theory bhardly seems
appropriate  for di- and triinterstitials. Second,
approximation of finite differences by differentials, as is
required to obtain Eq. 19.45 from the preceding formula,
and the subsequent manipulation of the integrals is of
questionable accuracy when the sums involved contain only
two or three terms. Consequently, loop nucleation is best
analyzed by a method that views the nucleation process as
the result of homogeneous reactions hetween the point
defects and small clusters.

19.4.2 Loop Nucleation by Chemical
Reaction-Rate Theory

The Kkinetics of point-defect annealing are commonly
treated by methods analogous to those employed in
homogeneous chemical kinetics.'® This method has been
used in Sec. 13.8 to calculate nucleation rates of fission-gas
bubbles in fuel. Hayns’” has treated interstitial loop
nucleation in a similar manner.

1. The vacancy and interstitial supersaturations are
independent of the loop-nucleation process. For void
nucleation, S, and S; are assumed to be specified by
point-defect balances that consider all sinks in the solid.

2. Vacancies and interstitials are mobile.

3. Di- and triinterstitials are immobile.
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4. Destruction of the clusters by radiation {(ie., by
dynamic resolution due to the energetic recoils in the
irradiated metal) is neglected.

Conditions 1 and 2 are quite appropriate for cladding
under fast reactor conditions. The third assumption is
probably not valid, but inasmuch as interstitial cluster
migration is not considered either in void-nucleation theory
(Sec. 19.3) or in void- and loop-growth theory (Sec. 19.5),
we shall nol introduce it at this point. The effect of
re-solution on loop nucleation rates is treated in problera
19.7 at the end of this chapter.

To visualize the process of loop nucleation in an
irradiated solid clearly, we first examine the simpler
situation in which the metal contains a supersaturation of
interstitials S; but no vacancies. Interstitial cluster nuclea-
tion is assumed to be governed by the reaclions

i, i
i+iz'*i3 [‘,)‘l

The physical justification for this mechanism is that the
rates of formation and decomposition of diinterstilials
according to reaction 1 are very rapid compared to lthe rate
of formation of triinterstitials; so the small drain on the
diinterstitial population caused by reaction 2 does noi
appreciably disturb the equilibrium of reaction 1. The
triinterstitials do not decompose, because ot the very low
value of «;(3).

In Sec. 13.4 the forward rate of reaction 1 has been
delermined for the case of vacancies. For interstitials. the
rate R, is expressed by

Ry =k, C? (19.66)
where, by analogy to Eq. 13 39,
'/.li.(.lDi
vF - (19.67)
2
a()

where z;; is the combinatorial number that includes the
number of sites from which a diinterstitial can be formed in
a single jump of one interstitial atom Lo an adjacent one.
For the vacancy-vacancy reyction in {ce metals, this
coefficient was found to he 84, but the rate musl be
multiplied by a factor of 2 to account for the mobility of
both partners of the reaction. Thus the combinatorial
number z,; is probably between 100 and 200. Instead of
the rate constants k, nucleation theory uses arrival rates j3;
thus the forward rate of reaction 1 can also be wrilten as

Rir = H(1) ¢ (19.68)

where

Q2D o
e (19.69)
11(;

and is the arrival rate of interstitials at a cluster of size 1
(i.e., another interstitial ).

The rate of the reverse of reaction 1 1i¢

(19.70)

R] r = 01(2) N>

where N, is the volumetric concentration of diinterstitials
and ¢;(2) is given by Eg. 19.64 with m = 1. In chemical rate
theory, the formation energy of a diinterstitial is naot
approximated by the strain energy of a dislocation loop of
two interstitials as it is in classical nucleation theory.
instead, c, is related to the binding cnergy of the
diinterstitial by the analog of Eq. 6.15:
[ E 261 - B

2

(19.71)

where B is the energy required to separate a diinterstitial
into two isolated interstitials. If B were 125 kJ/mole in
stainless sleel, €, calculated from Eq. 19.71 would be
identical to the value obtained by setting m =2 in
Fq. 19.65. Substituting Egs. 19.69 and 19.71 inte
Eq. 19.64, setling ¢; = ¢;, and replacing C; with S; by use of
Eq. 19.62 produces the result

71D B
L% e ()

«

(19.72)

Because reaction 1 is assumed to be al equilibrium, we
can set Ry = Ry, or (1) Cp - oy(2) Ny Using £q. 19.69
for Zi(1) and Fq. 19.72 for o(2) yields

) B y .
Ny = {2 va("’l‘)(j{ (19.73)

(19.71)

Assuming the diinterstitial to be immobile, we find the
arrival rate of interstitials at diintlerstitials to be given by

22,02D;C;

2
(&}

B(2) = (19.75)

a

where z;; is the number of sites surrounding a diinterstitial
from which a single interstitial can jump to form a
triinterstitial. Once the latter is formed, it cannot he
destroyed: so the rate of nucleation of intersiitial loops is
equal to the rate of formation of triinterstitials:

Woop = B2 = Bi(2) N, (19.76)
where the asterisk denotes nucleation in the absence of

vacancies. Substitution of Fgs. 19.73 and 19.75 into
Eq. 19.76 yields the nucleation rate:

74822 D,C} B
llﬂ;lup - "2 . °"Xp (k[')

o

(19.77)

or, in tenns ot the interstitial supersaturation expressed by
b, 19.62,

. 2310 (3¢;—B)
oop = :;(*’513 exp [ T (19.78)
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To apply loop-nucleation theory to irradiated metals,
we must consider the role of vacancies. To do so, the
preceding analysis is modified to include reactions between
vacancies and di- and triinterstitials in addition to reactions
1 and 2. The additional reactions are

Vi, i (3]
v+iz ~is [4]
for which the rates are
R3 = Bu(2) N2 (19.79)
R, = 0.(3) N, (19.80)

where §,(m) denotes the rate at which an interstitial cluster
of size m captures vacancies:
Zym $2DyCy

Be(m) = TTa

(19.81)

Zvm being the number of locations surrounding a size m
interstitial cluster from which a vacancy can jump and
reduce the cluster size by one.

Reactions 1 to 4 are depicted schematically in
Fig. 19.13. The nucleation current [, is the net rate at
which clusters of size m grow to clusters of size m + 1.
Balances on di- and triinterstitials can be expressed in terms
of the nucleation currents by

dN,

Lk (19.82)
dN, ,
o koh (19.83)

As indicated in Fig. 19.13, the nucleation currents are
related to the reaction rates by

m
3
) I 1
} | ,
} } I, = Ry - Ry
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Fig. 19.13 Relations between nucleation currents and the
rates of elementary reactions between point defects and
interstitial clusters.

I =Ryt —Riy—R;

=Bi(1) Ci —i(2) N,

—Be(2) N2 (19.84)

[ =Ry — Rq = 3;(2) N; — B,(3) N3

(19.85)
It will be recalled that steady-state nucleation refers to
the condition in which I} =1, =13 =...=1I,,p. Applica-
tion of this constraint to Eq. 19.82 and use of Eqs. 19.84
and 19.85 show that
BiCi= [q(2) + i+ B, No —B N (19.86)
Because the arrival rates 3;(m) and j3.(m) are very weakly
dependent on m, the arguments denoting the cluster-size
dependence of these coefficients have been deleted in
Eq. 19.86; 3, and 3, are considered as known constants
which depend only on the vacancy and interstitial super-
saturations.

Under irradiation, the ratio 3,/3; at loops is just slightly
less than unity; thus 3; and 3, are of comparable magni-
tudes. However, it was shown earlier in this section that
@;(2) is ~10% times larger than B; (or 8,). Consequently, the
last two termms in the brackets of Eq. 19.86 can be
neglected. By the same token, since N; is no greater than
N,, the last term on the right is also negligibly small.
Therefore, when steady-state nucleation has been attained,
BiCi = ;(2) N, or the equilibrium of reaction 1 is not
significantly perturbed by the introduction of vacancies
into the system. Therefore, N, is given by Eq. 19.73,
whether or not vacancies are present along with interstitials.

At steady state, Eq. 19.83 and analogous balances for
m =4, ... reduce to

(Bi+ By)N3 = 5Ny + BNy

(ﬁi + il}v)NAl = ﬁiN3 +SVN5 (1987)

Since the vacancy and interstitial arrival rates are approxi-
mately equal, the above equations are satisfied by

N21N32N41..‘

(19.88)

The nucleation rate is equal to any of the I,,. Using m = 2,

Lioop =1 =Ry —R4 =3iN; —BuN; (19.89)
or, taking into account the equality of N, and N3,
Il()()p = (pl - BV)NZ =11 -‘DT BiNZ
B\ .
=11- ) Loop (19.90)
1

Inasmuch as N is given by Eq. 19.73, the product 3;N,
in the above expression for Iy, is the nucleation rate in
the absence of vacancies. The vacancy supersaturation of
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the metal under irradiation reduces the loop-nucleation rate
by the factor |1—(3,/3;)]. The point-defect halances
developed in Sec. 19.5 suggest that 0.99 < £,/f; - 0.999 at
loops: so loop nucleation under irradiation is reduced by
factors ranging from 107* to 10* owing to vacancy arrival
at the critical nucleus (the trdinterstitial).

In the fec lattice, z,, =~ 20 (the same combinatorial
number was assumed for fission-gas-atom capture on
two-atom clusters in the bubble-nucleation calculation of
Sec. 13.8). The interstitial diffusion coefficient can be
approximated by

D, =ajvexp <—* ﬁ) (19.91)
where ¢ is the activation energy for interstitial migration.
In stainless steel, ;¥ is believed to be about 13 kd;mole. The
other parameters in the nucleation rate are

Q=124"
¢; = 420 kd/mole

The binding energy of a diinterstitial in stainless steel is not
known, but the value obtained by the loop strain-energy
approximation of Eq.19.65 is 125 kJ/mole. Taking
p=10"7 sec”!, Eqs. 19.78 and 19.90 together yield

By 1150
I vop = 2 X 10_37 (1 ,_> 53 exp j— ST (19.92)
loop 3.7 P Rerr107)

For a typical LMFBR fuel cladding $; = 10" ® 3,./3, = 0.98,
and T=500°C. Using these values in Eq. 19.92 gives
Loop = 10" em™ sec™'. Thus, a loop concentration of
10'¢ cm™? is established after about 3 hr of irradiation.
This time is considerably shorter than the incubation time
needed for void nucleation, which is about 1 year. The
observation that loop nucleation precedes void nucleation is
thus theoretically justifiable. However, the substantial
uncertainty in properties such as the binding energy of the
diinterstitial in stainless steel renders the accuracy of the
calculated nucleation rates no better than a factor of 100.

19.5 POINT-DEFECT BALANCES AND
THE VOID-GROWTH LAW

Having determined the rate at which embryo voids and
dislocation loops are introduced into the solid by nuclea-
tion, we next develop the theory for calculating the rates at
which these defect clusters grow. Point-defect balances
provide the means of computing the vacancy and void
supersaturations (S, and S;, or, equivalently, C, and C;)
which drive both the nucleation and growth processes. The
effects of applied stress and internal gas pressure on the
growth law are considered later in this section. The present
analysis is restricted to gas-free voids and unstressed solids.

The concentrations of vacancies and interstitials in the
irradiated solid are determined by equating the rate of
production of point defects to the rate of removal by all
mechanisms. The treatment is quasi-stationary because the
time derivatives dC,/dt and dC;/dt are neglected. This
approximation is justifiable on the grounds that changes in

the sink strengths (and hence the rates of point-defect
removal) due to the evolution of the microstructure of the
metal during irradiation are very slow compared with the
time required for the point-defect population to respond to
such changes.

The spatial gradients in the point-defect population are
also neglected because both the rates of production and
removal are assumed to be uniform throughout the metal.
The calculations are thus of the infinite-medium type. Very
strong concentration gradients do exist in the immediate
vicinity of the microstructural features of the solid which
are responsible for point-defect absorption. This complica-
tion is removed from the point-defect balances by homog-
enizing the sinks. That is, the discrete sinks in the solid are
replaced by spatially uniform absorbers of point defects.
The strength of the homogenized sinks, however, must be
determined by solving the point-defect diffusion equations
in the immediate vicinity of the discrete sinks. These
calculations have been reviewed in Sec. 13.5. The approach
is similar to that applied to nuclear reactor analysis before
the advent of extensive computer facilities; properties such
as resonance capture or thermal utilization were determined
by analysis of the spatial distribution of neutrons in a cell
containing representative quantities of fuel and moderator
in a geometry appropriate to the actual fuel-element
configuration. This analysis provided the infinite multiplica-
tion factor, which could then be used (without further
reference to the inhomogeneities in the internal configura-
tion of the core) to compute the critical size of the reactor
from neutron diffusion theory in which the system was
regarded as homogeneous.

Point-defect balance equations have been developed by
Harkness, Tesk, and Li;?! Wiedersich;2? and Brailsford and
Bullough.?® These three analyses are equivalent in ap-
proach but differ in detail. Wiedersich’s method was
developed in Sec. 13.10 for use in determining the growth
rate of nonequilibrium gas bubbles in the fuel. In this
section the theory of Brailsford and Bullough is used, since
their treatment of vacancy emission from the vacancy sinks
in the metal is superior to that used in the earlier theories.

19.5.1 Point-Defect Production Rates

Vacancies and interstitials are created in the collision
cascade caused by the scattering of fast neutrons from
lattice atoms. Each collision creates a primary knock-on
atom (PKA), which in turn produces free interstitials, free
vacancies, and clusters of interstitials and vacancies which
are the debris of the displacement spike (Sec. 17.10). If the
defect clusters are thermally stable, the number of free
vacancies and free interstitials created by a PKA need not
be equal, although the total number of vacancies (free plus
in clusters) must be the same as the total number of
interstitials. Section 18.5 treats a case in which more free
interstitials than free vacancies are formed, the remainder
of the latter appearing as a depleted zone. This calculation
showed that the depleted zones were not thermally stable
(i.e., they tended to evaporate) at temperatures above
~350°C, which is the lower temperature limit for void
formation. For T > 350°C, the defect clusters formed in
the collision cascade proper are very quickly destroyed,
either by dissociation into their component point defects
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by thermal evaporation ¢r by annihilziion by point defects
of the opposite kind. For the purposes of vouid-growth
analysis, we may assumne thal equal numbers, v, of vacancies
and interstitials are produced by each faslt-neulron scatter-
ing collision with a latiice atoni. ‘the volumetric production
rate of point defects is

Rate of production of vacancies
rate of production of interstitials

S em ™ see”! (19.93)
The nwuber of displacetnents per PKA, »| is considerably
snialler than thal predicted by isolated cascade Lheory
(Sec. 17.7), owing primarily to recommbination during cas
cade tormation or shortly thereafler a5 Lhe poini defects
move away from the spike. For stainless steel, the hest
estimate of » in a fast-neutreon spectrun is

p = 30 I'renkel pairs per neutron collision (19.94)
This number may ol be applicable below ~3507C
{Ref. 21).

I'he macroscopic scattering cross section for the metal
is X . It is the product of the microscopic scatlering cross
section and the density of mctal atoims. For stainless steel,
2, =0.2 em ' @ is the total fast-neutron flux (wilh
neiitron energies .-0.1 Me V).

19.5.2 Bulk Recombination

Recombination of vacancies and interstitials to reform
an atom on a normal latlice site occurs in the bulk of the
metal at a rate equal to k;C,C; em™ sec™’ | where k,, is the
rate constant for recombination (Eq. 13.42).

19.5.3 Removal at Microstructural Sinks

Natural and radiation-produced microstructural features
in the metal capture point defects of both types. These
sinks can be divided into three categories:*>

1. Unbiased (neutral) sinks. This type of sink shows no
preference for capturing one type of defect over the other
Lype. The rate of absorption is proportional to the product
of the diffusion coefficient of the point defect and the
difference in the concentrations of the point defect in the
bulk metal and at the sink surface. Included in this category
are (1) voids, (2)incoherent precipitates, and (3) grain
boundaries.

2, Biased sinks. Any dislocation in the solid exhibits a
preferential attraction for interstitials compared with
vacancies. This bias is due to the nonrandom drift of
interstitials down the stress gradient near the dislocation
core. Vacancies do not exhibit stress-induced migration
when near the dislocation. The effect may be incorporated
into ordinary diffusion calculations by making the effective
radius of the dislocation core slightly larger for interstitials
than for vacancies. Dislocations are unsaturable sinks for
point defects because they can climb as a result of
absorbing a vacancy or an interstitial (provided that climb is
not impeded by pinning of the line). The dislocations in the
solid are divided into two classes: (1) network dislocations

present in the unirradiated metal and augmented by
unfaulting of the Frank dislocation loops and (2) disloca-
tion loops formed by aggiomeration of interstitials.

The only difference between loops and network disloca-
Lions is the concentration of vacancies which is maintained
at the core. Both types of dislocations exhibil the same hias
toward interstitial absorption.

3. Coherent precipitates, If a point defect is capiured
by a sink but does not lose its identity on aksorption, it can
onlv wait at the sink surface to ne anninilated by point
defects of the opposile type. Such sinks act as recombina-
tion centers of iimited capacily. The most important
cxample of this type of sink is the coherent precipitate.

19.5.4 Poiut-Defect Absorption by Voids

The diffusion-vontrolled rate of absorption of vacancies
bry all of the voids in a unit volume of solid is given by

. ) . . 2782

Qveld = 47RND, [(,\ — CEY exp (RIRT)] (19.95)

where R is the average radius of the void population and N

is Lhe tolal concentration of voids in the solid. The vacancy

concentration at the void surface (the second term in the

brackets of Eq. 19.95} has been taken as that corresponding

to thermodynamic equilibrium in a solid under a negative

hydrostatic stress 2y/R. This tensile siress arises from Lthe

surface tension of the solid. which pulls the surface inward.

The analogous formula for interstitial absorption by
voids is

Q' - 47RND;C, (19.96)

The interstitial concentration at the void surface is effec-

Lively zero.

19.5.5 Incoherent Precipitates

Equations 19.95 and 19.96 apply to incoherent pre-
cipitales if R and N are interpreted as the average radius
and concentration, respectively, of the precipitate particles.

19.5.6 Grain Boundaries

For simplicity, grain-boundary absorption of point
defects is not included in the analysis presented here. It is,
however, covered in problem 19.9 at the end of this
chapter. The strength of grain-boundary sinks has been
estimated in Refs. 21 and 24. The latter study showed thai
for grain sizes larger than ~10 ym, grain-boundary absorp-
tion of point defects is small compared to the effects of the
other sinks in the metal.

19.5.7 Network Dislocations

Network dislocations maintain the equilibrium vacancy
concentration at the core radius. The rate of diffusion-
controlled absorption of vacancies by the py cm of
network dislocations per em? of solid is given by

27

QY -p

— 2D, . — Cea
ln(-ﬁ/Rdv) D\pN (C\ v '

(19.97)
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where % is approximately one-hall the distance between
distocations (Eq. 13.79) and Ry, is the radius of the
dislocation core for vacancies.

For interstitials the absorption rate by network disloca-
tions is

e Dipn G (19.98)

where Ry; is the core radius for interstitials, Setting

g 2T
” S (19.99)
and
27

L= o j
T n( IRy (19.160)

Eqgs. 19.97 and 19.98 ean be written as

QN - Z.Dypn (Cy —CE1) (19.101)

and

Q{\J = ZiDipNCi (19102,‘
Inasmuch as Ry; > Ry, 4; - Z,. Theratio (Z; — Z,){Z, is
estimated to be between 0.01 and 0.02.

19.5.8 Dislocation Loops

The only difference between network dislocations and
interstitial dislocation loops is the equilibrium vacancy
concentration at the core. When a dislocation loop emits a
vacancy or absorbs an interstitial atom, the area of the
stacking fault enclosed by the loop and the perimeter of the
loop inerease. According to Eq. 19.6, energy is required for
this expansion to occur, and so vacancy emission or
interstitial absorption by interstitial loops is less favorable
than network dislocations. The latter, if unpinned, are free
to climb without changing their length and so are not
subject to the energy restraint that affects loop expansion.
This phenomenon is taken into account by expressing the
rates at which loops absorb vacancies and interstitials by
the equations

le = Z\‘Dvpl(cv - C{) (19103)

Q =ZDip(C; — Ch) (19.104)

The coefficients Z, and Z; are the same as they are for
network dislocations since the stress fields around a
dislocation are the same for the two types. The point-defect
concentrations at the dislocation core, however, are dif-
ferent for network dislocations and loops; C! and C! are
determined by thermodynamic arguments,

In a solid containing equilibrium concentrations of
vacancies and interstitials, interstitial loops cannot (thermo-
dynamically) exist; the system could reduce its Gibbs free
energy by dissolving the loops. However, if the point-defect
concentrations are altered in such a way that the vacancies
and interstitials are always in equilibrium (i.e., C,C, =
CfruaCea), it is possible for an interstitial loop of a particular

size to exist in equilibrium with the point-defect environ-
ment provided that C; > C#9. Converscly, a stable vacancy
ioop could form in a solid in which C, > C{1. Here we
compute the size of an interstitial loop which exists in
equilibrium with a specified vacancy concentration C! and
the correspending equilibrium interstitial concentration ¢}

The Gibbs free energy of a piece of metal containing u,
vacancies, n; interstitials (at concentrations C! and (11,
respectively), and one interstitial dislocation loop contair-
ing m,; interstitials is

G =Ggo +e(im;) + nyu, + 0y (19.105)
wheve u, and y; are the chemical potentials of the vacancies
and the interstitials, respectively, ¢(m;) is the energy ot the
loop, and Gy is the reference free energy of the piece of
metal without the loop and with point-defect concentra-
tions C{4 and C{9.

We now perturb the system by transferring point
defects between the bulk solid and the loop. The criterion
of chemical equilibrium states that for the system at
equilibrium the free-energy change, 5G, for this proceus is
zero. Thus, taking the differential of Eq. 19.105,

i de
§5G = (m.{)ﬁmi +pedn, +pbdng =0

The number of interstitial atoms in the loop can be changed
only at the expense of the point defects in the bulk, so the
perturbations are related by

Smiy=86n,—dn

Eliminating 6m; from the preceding equations yields

(dml)(sn" dm; dny + pdng + pidn; = 0

The changes dn, and &n; are arbitrary and independent of
each other; thus the coefficients of both these periurba-
tions must independently be set equal to zero. This
requirement leads to two relations:

de .
-éi—mi +uy =0 (19.1006a)
and
de
el 19.106i
am Hy { 1060)

The chemical potential of vacancies in a solid with a
concentration C}, of this species is given by Eq. 19.32:

cl
My = kT In (qu)

For interstitials the formula is

c

= r . i
Wi = kT In (C?“)

1

When the vacancies and interstitials are in equilibrium with
each other, C}C{, = CPYCL9, which is equivalent to

(19.107a)

(19.107b)
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M =iy (19.108)
applies. Therefore, Egs. 19.106a and 19.106b are equiva-
lent. Using the former in conjunction with Eq. 19.107a
gives

dE/dmi )
KT

The loop energy €{m;) is given by Eq.19.6. If the
coefficient of m* in this formula is symbolized by K and
the stacking-fault term is neglected (because it is small
compared to the line-tension term), de/dm; can be com-
puted, and the above equation can be written
K
CL = Ct9 exp (~ — ~l*ﬂ)
2(m;)* kT
Had Eqgs. 19.106b and 19.107b been used, the resutt would

be
Cl=CiY exp (——KWW)
2(m;)%kT

Cl=C¢% exp (—

(19.109)

(19.110)

According to Eq. 19.65, K = 500 kJ/mole in stainless steel.

Equation 19.109 shows that the vacancy concentration
in equilibrium with an interstitial dislocation loop is less
than the equilibrium concentration in the loop-free solid.
Simultaneously, C! is greater than C¢¢ in order to maintain
the loop.

Although the above analysis applies to a strictly
thermodynamic situation, the results can be employed in
the nonequilibrium environment created by irradiation of
the solid. To do so, it is assumed that the concentrations of
point defects in the solid immediately adjacent to the core
of the dislocation line comprising the interstitial loop are
given by Eqgs. 19.109 and 19.110. The concentrations in the
bulk of the solid far from the loop are C, and C;, which are
not in equilibrium with the loop {(nor with each other). The
assumption of interfacial equilibrium is commonly used in
analyses of many chemical engineering mass-transfer opera-
tions. With this assumption the rates of vacancy and
interstitial absorption by the loops in the solid are
determined using Eq. 19.109 in Eq. 19.103 and Eq. 19.110
in Eq. 19.104. For application in the point-defect balance
equations, m; in Egs. 19.109 and 19.110 can be approxi-
mated by the size of the average loop in the solid, and the
point-defect absorption rates by loops become

K
L=Z,Dyp |C, —Cexp( - 19.111
Q £ l exp ( o, ' RT)] ( )

and

Q}=ZiDip1 [C,fch exp( (19112)

)
2(my)* RT)
Thus the loop components of the total dislocation density
of the solid do not exhibit quite so large a bias for
interstitials as do the network dislocations, for which QY
and QN are given by Egs.19.101 and 19.102. The
alterations in the driving forces due to the last terms in the
brackets of the above formulas tend to reduce the bias
toward interstitials introduced by the inequality of the
coefficients Z; > Z,. However, if the loops are large and/or

the temperature is high, the exponential terms in
Egs. 19.111 and 19.112 approach unity, and the disloca-
tion network and the dislocation loops behave in an
identical manner toward the point defects in the solid.

19.5.9 Coherent Precipitates

Brailsford and Buliough®® assign the recombination
function of coherent precipitates to the plane of matrix
atoms adjacent to the second-phase particle. This plane, or
interface, is endowed with the capacity to strongly bind or
trap point defects that hop into it from the adjacent
matrix. Figure 19.14 shows a cross section through the
precipitate—matrix interface. Vacancies and interstitials
that are trapped at the interface are assumed to be unable
to escape; removal of trapped point defects occurs only by
annihilation with point defects of the opposite type which
impinge on the interface or by recombination of trapped
vacancies and interstitials. The coherent precipitate is
distinguished from the other microstructural defects in the
solid by the absence of thermal emission of point defects
(which appears in the terms involving C{9 in Eq. 19.95 for
voids, in Eq. 19.97 for network dislocations, and in
Eq. 19.111 for loops).* We will summarize the function of
these sinks in the manner visualized in Ref. 23.

Although the interface between a coherent precipitate
particle and the matrix does not release point defects, the
fact that it is of limited capacity means that the concentra-
tions of vacancies and interstitials at the surface of the
particle are not reduced to zero as they would be at the
surface of a totally black sink. Figure 19.15 shows
schematically the concentration profiles of point defects
near a coherent precipitate—matrix interface. The rates at
which vacancies and interstitials flow to the interface can
be divided into two steps, which proceed in series. Between
the bulk of the solid and the interface, the flow of point
defects is governed by ordinary diffusion to a spherical
sink. The driving force for this step is the concentration
difference C, — CF for vacancies and C;— CF for inter-
stitials. For diffusion-controlled absorption by a spherical

*This unique property means that coherent precipitates
are capable of removing point defects from a solid in which
the point-defect concentrations are at the equilibrium
values C{9 and C{9. Or these supposedly thermodynamic
quantities are determined by Eqgs. 19.20 and 19.23 only in
solids that contain no coherent precipitates. If coherent
precipitate particles are added to a solid that initially
contained its equilibrium complement ol point defects, the
precipitates would augment the homogeneous recombina-
tion process and thereby depress the concentrations of
vacancies and interstitials below the equilibrium value. The
extent of the decrease would depend on the number of
precipitate particles and the density of network dislocations
in the solid. The latter are the principal suppliers or
removers ol point defects when the equilibrium concentra-
tions are perturbed by the introduction of sources (e.g., by
irradiation) or sinks (in the case of coherent precipitates).
Despite the unpalatable theoretical consequences ol the
lack of thermal emission ol point defects from coherent
precipitates in a solid, the practical elfect on C&¢9 s
negligible (see problem 19.11 at the end of this chapter).
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Fig. 19.14 Schematic diagram of the interface between a coherent precipitate particle and

the host matrix. (After Ref. 23.)

body in which the concentrations at r= R, (the particle
radius) and r = °¢ {the bulk solid) are specified, the fuxes
are given by Eq. 13.65:

D,

== (C, — CE AL
Jy RD(C‘ CcH {19.113)
and
D
=, (C;—-C¥H) (19.114)
Rp

where J and J; are the number of point defects reaching a
unit area of precipitate per unit time. Because there is no
net accumulation of either type of point defect at the
interface, the fluxes must obey

(19.115)

The concentrations CF and C¥* refer to the matrix
adjacent to the trapping interface. In order to evaluate
these concentrations, we must consider the second step in
the series, that of point-defect attachment to the interface.
We first determine the rate at which point defects impinge
on the trapping interface from the adjacent matrix when
the vacancy and interstitial concentrations here are C¥ and
C;", respectively. Consider the case of vacancies. The plane
of matrix atoms above the interface plane contains l,r‘"af)
lattice sites per unit area from which a vacancy can hop
toward the interface. The fraction of lattice sites that are
occupied by vacancies in the matrix at this point is
C*Q = C¥al, where § is the atomic volume and a, is the
lattice parameter. Therefore, a total of (a;°) (C¥a)) = a, C}¥
vacancies per unit area can potentially reach the trapping
interface in one jump. The frequency with which a vacancy
jumps in any one direction in the matrix is w, (Sec. 7.2).
For the fce lattice, w, is related to the vacancy diffusion

coefficient by Eq. 7.29. Thus the rate at which vacancies
impinge on a unit area of trapping surface is given by

Vacancy impingement rate
D,

a;,)

D.C¥
= (auc:\t:)wv = (a()(-l?':)( a =
al)
Similarly, the interstitial impingement rate on the interface
from the adjacent matrix is D;C¥/a,. These impingement
rates can be regarded as the solid-state analogs of the rate at
which molecules from a gas strike a unit area of surface. To
determine whether the impinging vacancies and interstitiais
stick or are reflected back to the matrix, we need to
calculate the fraction of the available sites on the trapping
interface which are occupied by the two types of point
defects. To do this, imagine the trapping interface to be a
simple square grid that binds vacancies at the mesh points
and interstitials in the open spaces. The mesh-point sites
may either be occupied by a trapped vacancy or empty
(i.e., occupied by an atom). Similarly, the interstitial
trapping sites may either be occupied by a trapped
interstitial atom or empty. Let 0, = fraction of vacancy
trapping sites on the interface occupied by vacancies and
#; = fraction of interstitial trapping sites on the interface
occupied by interstitials. A vacancy is trapped only if il
jumps into an unoccupied site; the probability of so doing
is 1 —0,. The rate at which vacancies are trapped on the
interface is the product of the impingement rate and the
fraction of unoccupied sites. Since the process of diffusion
from the bulk to the interface is in series with the process
of attachment to the interface, we equate the rates of
diffusion and trapping,* or

*Equating the rates of sequential processes is also used
in analyzing series resistances in heat-transfer processes.
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Fig. 19.15 Vacancy- and interstitial-concentration profiles
next to a coherent precipitate particle.

D, D,C¥
J, ==~ (C, — C¥) = (1=0y) (19.116)
p (4]
For interstitials, the analogous formula is
Dl DiC;k
Ji=5—(Ci~CH=——-(1-0;) (19.117)
Rp a()

To deduce the connection between the point-defect
occupation of the trapping interface (the 0’s) and the
point-defect concentration in the matrix adjacent to the
trapping interface (the C*’s), we must specify the details of
the interaction between the free point defects and the
trapped ones. Many models of this interaction can be
constructed; here we will investigate a primitive model
similar to that invoked by Brailsford and Bullough?®? in
their analysis of the same phenomenon (the present model
differs from theirs in that recombination reactions between
trapped point defects are not considered here). Three
possible fates of a vacancy impinging on the trapping
interface are depicted in Fig. 19.16. The impinging vacancy
may:

(a) Strike a site already occupied by a vacancy, in which
case the impinging vacancy is returned to the matrix.

(b) Enter an unoccupied site that is adjacent to a
trapped interstitial. The probability of this event is z0;,
where z is the number of vacancy sites surrounding a
trapped interstitial which result in certain recombination
when jointly occupied (for the simple square interfacial
structure, z = 4).

(c) Enter an unoccupied site that is not adjacent to a
trapped interstitial. The probability of such a jump is
1— 0\, - ZOi.

The consequences of interstitial atom impingement on
the interface are obtained from processes (a) to (¢) by
interchanging the subscripls i and v.

We now construct a balance equation for the trapped
vacancies and interstitials. Because the system is at steady
state, 0, and 0, are time independent, or the rate at which
point defects become incorporated into the interface by
process (c¢) must be equal to the rate at which they are
removed by process (b). Note that process (b) removes a
point defect of the opposite type from that which process
(c) adds to the interface. Conservation of trapped vacancies
is expressed by

D.C¥
(1—0, —20,)=

1
a() O

D,C¥
— Ly, (19.118)

where the left side is the input due to the fraction of
impinging vacancies that strike an unoccupied site that is
not adjacent to a irapped interstitial and the right side is
the rate of removal of trapped vacancies by impinging
interstitials from the nearby matrix. The balance on
trapped interstitials yields
ik *
Dic (1—0;—20,) :“DVCV' 0;
a, a,

Subtracting Eq. 19.119 from Eq. 19.118 yields

(19.119)

DiC¥ (1—0,) - D,CE(1—0,)

which, when compared with Eqs. 19.116 and 19.117,
simply confirms the fact that the fluxes of the two types of
point defects from the bulk to the coherent precipitate are
equal no matter which step of the two back-to-back
processes is considered.

Equations 19.118 and 19.119 can be solved for 0, and
0, to yield

_YF (v 1)z)

0, 2 . (19.120)
Yzt yF e
* 4 — Ak
Oi:j*z e (19.121)
YR z+yt+z
where
D.C¥
Y* :b<C* (12.122)
1~

In Fig. 19.17 0, and 0; are shown as functions of the
parameter y* for a fixed value of z (e.g., z = 4). Equations
19.120 and 19.121 apply only in the range

z—1 Z

<y*F < ———
Z Y z— 1

(19.123)

Beyond this range, either {; or &, is zero, and the other is
given by the formulas shown on the graph. When y* =1, 0,
and 8, are both equal to (1 + 2z)™".

The trapping and recombination efficiency of the
interface has been analyzed with the aid of a particular
model of what goes on at the boundary separating the
precipitate particle and the host matrix. Other models of
these interactions are certainly possible, but they will all
lead to relations between the 8’s and v’s of the type shown
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Fig. 19.16 Consequences of vacancy impingement on a coherent precipitate particle. See text for a
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Fig. 19.17 Point-defect occupation probabilities of the
trapping interface for a simple model.

in Fig. 19.17. Although this aspect of the theory is
dependent on the model chosen, the development up to
Eq. 19.117 and what follows from now on are applicable to
any mechanism of trapping.

If we use the second equalities of Eqs. 19.116 and
19.117, C¥/C, and C{f/C; can be expressed as functions of
0, and 0;:

e 1 B 1—9 : 19.124
—_— +__ PR A ‘

e (1700 (19.124)
Cj—l R"l 0 B 19,125
7Ci B ' ao( i) ( ' 2 )

Now J, and J; are set equal to each other and the C*’s are
expressed in terms of the f’s by the above formulas. These
manipulations lead to

G&gj, =00 =0y
D.C. ) (aniRy) + (1—00) (agRy) + (1—0y 9120)

According to Egs. 19.120 and 19.121, 0, and 0; are
functions of the single parameter y* (assuming z is a
specified constant). Inserting these equations into
Eq. 19.126 determines y* as a function of D,C,/D;C,,
which is specified by the bulk concentration of point
defects. Once y* is determined, 0, and 0; are obtained from
Eqs. 19.120 and 19.121, and C}¥/C, and C¥/C;, from
Egs. 19.124 and 19.125. The desired fluxes of vacancies
and interstitial atoms to the coherent precipitates are then
obtained by eliminating C¥ and C* from the fluxes given by
Egs. 19.113 and 19.114. Multiplying J, and J; by 471Rf,Np
(where N, is the number of precipitate particles per unit
volume of solid) yields Q¥ and QP, the removal rates of
vacancies and interstitials per unit volume of metal by the
coherent precipitates. Following the procedure described
above yields

QP = 47R,N,D,C.Y, (19.127)

QP - 47R, N, D;C,Y; (19.128)

where
(1—10,)

Y. =- 9.12¢
YT g Ry + (10, (19.129)

(1—=10y)

L= - 19.130
Vi ay Ry + (1 0y) ‘ ’

and §, and 0; are known functions of the ratio D,C, /D;C;
determined by the method outlined above. The coefficients
Y, and Y; represent the biasing of point-defect fluxes to
the coherent precipitates. They are analogous to the
coefficients Z, and Z; which established the preference of
dislocations for interstitials. For coherent precipitates,
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however, the biasing coefficients Y, and Y; depend on
D.C,/D;C;, which is in turn established by the strengths of
the other point defects in the system. Thus, the biased
absorption properties of coherent precipitates depend on
the environment in which the precipitates are situated,
which is not the case for the fixed-bias dislocations. The
manner in which the coherent precipitates function can be
illustrated qualitatively as follows. Because Z; > Z, by a
percent or so, D,C,/D;C; is greater than unity by a
comparable amount (otherwise voids would not nucleate or
grow). Since D,C,/D;C; >~ 1, Eq. 19.126 shows that 0, > 6,
or, according to Eqgs. 19.129 and 19.130, Y; > Y,. The
requirement that Lhere be no net accumulation of point
defects at the coherent precipitates (as expressed by
Eq. 19.126) leads to

Y (D"C")Y
i Dici v

so the problem is reduced to one of finding the magnitude
of Y, (or of Y;). If the precipitate radius, R,,, is reasonably
large (say several hundreds of angstroms), the ratio a, /R, is
small (~1072). If, in addition, the ratio D,C,/D;C; is close
to unity, then the parameter y* will also be close to unity,
and Fig. 19.17 shows that 0, and 0, are equal to ~(2z +
1) ~ 107", For this situation, Egs. 19.129 and 19.130
show that Y, and Y, are both close to unity. We may make
the approximation

(19.131)

Y. =1
(19.132)
v - D,C,
LODiG
and Eqs. 19.127 and 19.128 reduce to
Q2 = QP = 47R N,D,C, (19.133)

This equation adequately describes the strength of coherent
precipitate sinks in irradiated metals.

19.5.10 Point-Defect Balances

Having determined the rate of production of vacancies
and interstitials from fast-neutron collisions with lattice
atoms and the rates at which the point defects are
consumed by various processes involving the large defects in
the solid, we can write the steady-state point-defect
balances as

D= Qi + QN + QL + QP + homo. recomb.  (19.134)

for vacancies, and

vEp = Qyeid + QN + QL + QP + homo. recomb.  (19.135)

for interstitials.

The vacancyremoval rates per unit volume of solid,
Queid QN and QU are given by Eqgs. 19.95, 19.101, and
19.111. The corresponding terms for interstitial removal are
given by Eqgs. 19.96, 19.102, and 19.112 (the thermal
emission term in the last of these formulas can be
neglected). The rate of absorption of both types of point

defects by coherent precipitates is given by Eq. 19.133. The
rate of homogeneous recombination is k, .C,C;, where k;, is
given by Eq. 13.42. With these sink strengths, Egs. 19.134
and 19.135 become

]
pE D = 47TRND, [c\, — Ct9 exp (;1; )]

+ Zypx Dy (C\ — Gy

K
+ ZepiDy [Co — Ce ex (— %—-)
: [ P\ 2m)% kT

+47R, N, D, Cy + Ky CiCy (19.136)
and
vZ b =47RND{C; + Z; (ox + p1) DiC;
+47R,N,D,C, + ki CC,  (19.137)

Equations 19.136 and 19.137 can be solved for C, and C;
(analytical solutions are reported in Ref. 23). For N, p;, and
N, = 0, the point-defect balances given above reduce to
those obtained earlier for treating fission-gas bubble growth
in the fuel (Eqs. 13.186 and 13.187, in which Cf“ = 0). The
general shape of plots of C, and C; as functions of
lemperature are shown in Fig. 13.17. Such solutions are
needed for fixing the supersaturations S, and S; in
nucleation theory and for void growth.

19.5.11 The Void-Growth Law

The void-growth law is the time rate of change of the
void radius R at any instant during irradiation. The void is
assumed to be spherical, and its growth is controlled by
diffusion of vacancies and interstitials from the bulk of the
solid to the void surface. The growth law under these
circumstances was derived in Sec. 13.9 for the case of a
cavity that contained some gas (i.e., a bubble). The same
growth law is valid for the gasfree cavity (the void)
provided that the internal gas pressure is set equal to zero
wherever it appears. The void-growth law is obtained from
Eqgs. 13.171 and 13.176, with p= 0 in the latter,

(19.138)

_Q _ eq 27&2) _ _
R {Dv [Cv Ce9 exp (—RkT D;C;

The concentration of interstitials at the void surface
(Eq. 13.179) has been neglected because of the large energy
of formation of this point defect.

Brailsford and Bullough®® have inserted the solutions
of Eqgs. 19.136 and 19.137 into Eq. 19.138 and expressed
the void-growth rate in the following form:

R=R, F(n) + R, (19.139)
where RO is the void-growth rate in the absence of both

homogeneous recombination {k;, = 0) and thermal emission
(Cta =0y,
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VES‘[)[)(](Zj - Z\)SZ

R(Z.pa + 1TRN) (Z;py + 47RN + 47R N, (19.140)

R(v

where

Pd ™ PN T 01 (19.141)
is the total dislocation density in the solid. This growth
contribution is independent of temperature and depends on
the dislocation bias for interstitials Z; — Z, and the
morphology of the solid (i.e., the number and size of voids,
precipitates, and the dislocation density). It is also directly
proportional to the defect-production rate, or the fast-
neutron flux.

The effect of homogeneous recombination on void
growth is contained in the factor F in Eq. 19.139, which is*

2 Y .
F(n)=;[(1+n) — 1] (19.142)
where 7 is the dimensionless parameter
n =4k v D [DD (Zypg + 4nRN + 47RN)
X (Zipq + WMRN + 47R N ™' (19.143a)

or, eliminaling ki, by use of Eq. 13.42 and setting 7; = Z,.
42; w2 (D2
NI g - me—-—— (19.143b)
D.a;, (Zypg + 4TRN + 47R ;)N ,)”

When homogeneous recombination is negligible (k;, > 0 or
n > 0}, the factor F reduces to unity.

The effect of thermal emission from the various sinks is
contained in the void-shrinkage term R

. . 2y Q2
R, = — D,C98 {zlﬂRpr exp (_R‘ kT)
2y Q2
t 2wy (R kT)

Q
+ 20, (2}3 ot LK/2(m) m)}

X [R(Zypq *+ 47RN + 47R, N)] 7!

(19.144)

In the terms in the second and third lines of Eq. 19.144,
differences in exponentials have been approximated by
differences in the arguments. The value of R, is inde-
pendent of the defect-production rate and approaches zero
at temperatures sufficiently low to render thermal emission
negligible (i.e., C&¢% — 0).

19.5.12 The Factor R,

When no coherent precipitates are present, R() can be
written as

*A quantity denoted by u in Ref. 23 has been omitted
in Eq. 19.142. This simplification has no significant effect
on the numerical values of the void-growth rate.

VY D (7~ T
Ro = — (4_”), S (18045
ATRIN 2, (1+x)?
where
« - JmRN (19.146)
Z\'/)(l

Equation 19.145 demonstrates that both a biased sink
(with Z, — Z,, greater than zero)} and a neutral sink (which
for voids provides the term 4TRN) are necessary for void
growth. The balance between the strengths of the neutral
and biased sinks, as exemplified by the dimensionless
quantity x, is crucial to void growth. The void-growth rate
is a maximum when x =1, If x is less than unity (as il
would be at the beginning of irradiation), decreasing x by
increasing the dislocation density reduces the rate of void
growth. This behavior explains the ability of heavily
cold-worked metals to resist void swelling at low fluences.
If, however, x - 1 because of the development of a sizable
void population, the primary role of the dislocations is Lo
provide a preferential sink for interstitials, thereby permit-
ting the excess vacancies to flow to the voids, In this case,
bighly cold-worked material promotes rather than deters
void growth.

When coherent precipitates are present in the alloy and
voids are not strong sinks for vacancies, R, becomes
V).:S(I)KZ (Zl - Z\) 1 .

7 Zopa * ATRN,, (19.147)

R() R

S

[n this case the dislocations and the precipitate particles
combine to reduce void growth. This theoretical prediction
is in accord with the very low irradiation swelling of
precipitate-containing alloys, such as Inconel and the steel
PE-16.

19.5.13 Temperature Dependence of Void
Growth

The two highly temperature sensitive parameters in the
void-growth law are the vacancy diffusion coefficient D,
and the equilibrium vacancy concentration C&9, The
temperature dependence of the parameler n is controlled
by D, and the product D,C¢9 appears in R,. At low
temperatures, D, becomes small and Eq. 19.143b shows
that n becomes large. In this limit the factor F becomes
small. As the temperature is reduced, Eq. 19.144 indicates
that R, approaches zero. Since both F(n) and RL. become
small at low temperature, Eq. 19.139 shows that void
growth ceases in this limit.

At the opposite extreme of high lemperature, 7
becomes small and F approaches unity; Re then becomes
increasingly negative. Thus the theory predicts a tempera-
lure at which the void-growth rate is a maximum, which
corresponds (o the observed peak swelling temperature.
Beyond this temperalure, void growth should rapidly
decrease and eventually become negative since the voids
tend to evaporate rather than grow. Figure 19.18 shows
how the growth rate changes with temperature for typical
fast reactor conditions. The characteristic bell-shaped swell-
ing-temperature plot (Fig. 19.3) is quite well reproduced by
the theory. The temperature limits of observable swelling
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Fig. 19.18 Temperature dependence of the void-growth
rate in stainless steel under fast-neutron irradiation. (After
Ref. 23.)

and the peak swelling temperature are in accord with
observations.

Brailsford and Bullough®? have deduced an approxi-
mate analytical swelling law by simplification of the
foregoing equations. However, in view of the change of the
void density N and the dislocation density p, during
irradiation, the void-growth law should be incorporated
into a more general analysis that includes the evolution of
the microstructural features of the solid with irradiation
time. Such a computation would require aloop-growth law
in addition to a void-growth law. The loop size and
concentration couple back into the void (and loop) growth

laws via p~, p;. and the average loop size m.

19.5.14 Stress-Enhanced Void Growth

The growth law developed above is valid only if the
void contains no gas and if the metal is not under stress.
However, in the temperature range for void growth, helium
atoms produced by (n,) reactions in the metal are
sufficiently mobile to form gas-atom clusters in the lattice.
As shown in Sec. 19.3, voids readily nucleate on these
clusters; thus some gas must be contained in the voids as
they enter their growth stage. In addition, the cladding of a
fuel pin is always stressed, either by contact with swelling
fuel or by internal pressure in the fuel pin arising from
released fission gases. The state of stress in an internally
loaded cylindrical tube is biaxial, but, to simplify matters,
we consider here a metal subject to uniform hydrostatic
tension. The theory of void growth needs modification to
account for these two complications. We present the
analysis of Brailsford and Bullough.*®

Equation 19.139 shows that the void-growth rate
consists of two components; R, contains the thermal
emission terms and hence is the only part affected by the
state of stress or by intemal gas pressure. Consequently, it
follows that internal gas pressure and stress begin to
influence the growth rate only when Re becomes signifi-
cant; i.e., for temperatures greater than the peak swelling
temperature. Thus, we need only be concerned with R,
and, in particular, with how internal pressure and stress

affect the equilibrium vacancy concentrations at the voids
and the dislocations. Because stress- and gas-assisted growth
are important only at high temperatures, we may neglect
the presence of interstitial loops. These will have virtually
disappeared by vacancy capture by ~600°C (see Fig. 19.7).
The vacancy balances (with the deletion of the above-
mentioned terms) are given by Eq. 19.136 if the vacancy
concentration at the void surface is replaced by

cerosn|(32-9) (1)

The vacancy concentration at the void surface depends only
on the normal stress at this point, which by a force balance
is equal to (2y/R)}—p (see Eq. 13.6). The stress in the
medium does not affect the vacancy concentration at the
void provided that the volume of a vacancy in the solid is
equal to the atomic volume or that there is no lattice
contraction around a vacancy. If this is not so (and, in
general, it is not), the ahove expression for the vacancy
concentration at the void surface must be modified.?* 2’
We neglect this effect here but consider it in problem 19.8
at the end of this chapter.

The other term in the vacancy balance equation which
needs to be altered is the equilibrium concentration of
vacancies at the network dislocations, which depends on

stress according to
29
Ceae -
v exp (kT)

where 0 is the hydrostatic tension in the solid.

If the modified vacancy balance and the unchanged
interstitial balance given by Eq. 19.137 are substituted into
the void-growth rate formula (Eq. 19.138 in which the
vacancy concentration at the void surface altered to
account for internal gas pressure as indicated above), RU
and F(n) are found to be unchanged. However, R,, which
was formerly given by Eq. 19.144, becomes (with N, and
p1=0)

2
D,CL02? 7, py (o fp— };’)

Re= RKT(Z,pq + 4TRN)

(19.148)

In the gas- and stress-free case, the parenthetical term in the
numerator is always negative, and R, represents a shrink-
age. However, the sign of Re can change when the void
contains gas and the solid is in tension. Shrinkage due to
thermal emission changes to stress-enhanced growth* when

orp=2 (19.149)
R

The critical stress for unlimited void growth, which depends
on the gas content of the cavity, can be obtained in the
same manner as that employed in deriving the analogous
condition for void growth of helium bubbles on grain
boundaries (Sec. 18.10). Suppose that the void contains j
helium atoms. The internal pressure is given by the perfect
gas law (Eq. 18.96), and Eq. 19.149 becomes

*Stress-enhanced swelling is also called volume creep.
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_2y 3T
R 4xR?

The critical void radius occurs when do/dR =0 and the
stress at this void size is the critical stress for unlimited void

growth:
(msm“)’“*
Oerit =\ g7 LT
81jkT

which, if j is expressed in terms of the radius of the
stress-free equilibrium bubble containing j helium atoms
(by Eq. 18.94), reduces to the Hyam—Sumner relationship
(Eq. 18.98).* The only difference between helium bubbles
on a grain boundary and helium-containing voids in the
grains of the solid is the growth law, which is given by
Eq. 18.102 for grain-boundary helium bubbles and by
Eq. 19.148 for helium-containing voids within the grain.

Whether unbounded stress-enhanced void growth will
occur for a specified hydrostatic tension depends on the
number of gas atoms in the void. The total quantity of
helium gas produced in the metal was discussed in
Sec. 18.10. The helium content of stainless steel increases
linearly with time (Fig. 18.40). If there are M atoms of
helium per unit volume of the metal and if all the gas is
equally distributed among N equal-size voids, j would be
fixed as M/N. However, the available helium is, in general,
partitioned among the matrix, the voids, and the grain-
boundary bubbles. Determination of the fraction of the gas
which is in the voids requires calculations similar to those
presented in Secs. 13.9 and 15.7 for obtaining the distribu-
tion of fission-gas atoms in the same three locations in the
fuel. We saw in Sec. 19.3 that void nucleation requires only
a few helium atoms per void embryo. Unless much more
helium is collected by the voids during the growth period, j
in Eq. 19.150 may be quite small, and the critical stress may
always be much larger than the applied stress (when
0 < Ocrit, the void shrinks rather than expands).

Brailsford and Bullough have integrated the void-
growth law (Eq.19.139) with R, given by Eq.19.148.%
The computations were performed for applied uniaxial
tension, which requires that ¢ in Eq. 19.148 be replaced by
0/3. Helium was generated at a rate appropriate to fast
reactor conditions; so j increased linearly with time. Since
nucleation theory was not incorporated into the calcula-
tion, the void and loop densities had to be arbitrarily
specified. Typical results of these computations are shown
in Fig. 19.19, in which the ordinate is the volume swelling
for a population of uniform size voids. Stress-assisted
growth becomes dramatic at high temperature because
D,C&9 in Eq. 19.148 becomes large. The rather sudden
onset of swelling in the high-stress 700 and 800°C curves is

(19.150)

*Equation 40 of Ref. 25 (when divided by 3 to
convert from uniaxial to hydrostatic slress) appears to be in
error by a factor of 2.

tActually, the complele theory, with loops and grain
boundaries included as sinks in R, was employed, and
loop growth laws were used to determine the change in the
dislocation population. The ‘simplified form given by
Eq. 19.1481s accurale at high temperatures.

due to the delay time required for sufficient helium to have
trickled into the voids to render g..;; of Eq. 19.150 equal
to the specified stress. The 600°C results are insensitive to
stress because the first term in Eq. 19.139 is the primary
contributor to void growth at this temperature.

Figure 19.20 shows similar theoretical results as a
function of temperature. The double hump in the swelling
curve has not been confirmed by reactor irradiations of
steel, but this unexpected shape has been found in
ion-bombarded metals at a higher dose than obtainable with
fast neutrons.

Restriction of the stress enhancement of void growth to
temperatures in excess of 600°C suggests that the assump-
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Fig. 19.19 Stress-enhanced swelling for various stress levels
and temperatures as a function of fluence. (After Ref. 25.)
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Fig. 19.20 Temperature dependence of stress-enhanced
void growth in steel. The solid curves apply to a dislocation
density of 10° cm? and a helium production rate of 107
ppma/sec. (From A. D. Brailsford and R. Bullough, British
Report AERE-TP-542, 1973.)
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tion inherent in the analysis that all helium is in the voids
may be unrealistic. If most of the gas agglomerates on grain
boundaries, the growth law is that of Eq. 18.102, not
Eq. 19.148.

19.5.15 Saturation of Void Growth

The theory just developed predicts that voids continue
to grow indefinitely in an irradiated metal; no mechanism
for saturation of growth is provided. Equation 19.145
shows that as the void size R increases the growth rate
decreases but never ceases entirely. The only way that void
growth can be completely halted is to remove the pref-
erential bias of the dislocations for interstitials or, equiv-
alently, to imbue the voids with the same preferential
attraction for interstitials as the dislocations.

Harkness and Li*® have proposed a mechanism of
terminating void growth which is based on the first of these
two possibilities. They seek to determine the conditions
under which all the dislocations become interconnected
with the voids in a stable manner. If the dislocations are
securely pinned to voids, they (the dislocations) can no
longer climb freely, and hence their ability to absorb more
interstitials than vacancies is eliminated. Here we reanalyze
their proposal by extension of the method used previously
to determine the equilibrium concentration of point defects
at an interstitial dislocation loop.

Consider a single void and the curved length of
dislocation line between voids. The associated solid con-
tains n, vacancies and n; interstitials at concentrations C,
and C;, respectively. We calculate the void radius R and the
distocation-line length /' for which the system is stationary
in the specified point-defect environment. The void-
dislocation segment configuration is depicted in
Fig. 19.21(b), where the two halves of the void at the
termination of the dislocation-line segment are shown in
place of a single void. The remainder of the solid is assumed
to be a repetition of the basic unit shown in Fig. 19.21(b),
which means that the microstructure appears as sketched in
Fig. 18.22(b). The case in which the vacancies and inter-
stitials are in equilibrium (i.e., C;C, = C!4C{9) is treated
first. The derivation is then extended to arbitrary point-
defect concentrations. The general method of calculations
of this type have been outlined by Straalsund®® and by
Wiedersich and Herschbach.*®

The Gibbs free energy of the system shown in
Fig. 19.21(b) is given by

G = G() + E(m\».mi) + Ny, + Ny (]9151)

where u, and y; are the chemical potentials of the vacancies
and interstitials (for the first portion of the analysis,
My = —;, indicating equilibrium between the two types of
point defects); and G, is the free energy of the system
containing the length I of dislocation line, bul no void, in a
solid wherein the point-defect concentrations are C$9 and
C9. respectively | Fig. 19.21(a)|. As with the interstitial
loop, a void is not thermodynamically stable under these
conditions. Dislocation lines, however, can exist in a solid
containing equilibrium point-defect concentrations. When
the point-defect concentrations are changed from C{9 and
Cr y, and p1; are no longer zero, and the void-dislocation

EDOGE
DISLOCATION

Fig. 19.21 Unit of a system of interconnected voids and
dislocations. The shaded area below the dislocation-line
segment denotes the extra half-sheet of atoms comprising
the edge dislocation.

line segment shown in Fig. 19.21(b) is created from the n,
vacancies and n; interstitials in the piece of solid under
examination. The energy of the entity shown in
Fig. 19.21(b) is denoted by e(m,,m;), where m, is the
number of vacancies needed to form the void and m; is the
number of interstitials required for the dislocation line to
climb from its original location in Fig. 19.21(a) to the
equilibrium position in Fig. 19.21(b). If C; and C, are such
that climb occurs in the opposite direction from that shown
in Fig. 19.21(b), m; is negative, which raeans that vacancies
rather than interstitials have been absorbed by the pinned
segment of dislocation line. The energy e(m, m;) is given by
the sum of the energies of the void and the associated
length of dislocation line:

e(m,,m;) = 47R%y + (Y= 1, (19.152)
where v is the surface tension of the solid and 74 is the line
tension of the dislocation. The change in the length of line
in going from the configuration of Fig. 19.21(a) to that of
Fig. 19.21(b) is 7 — 1. The first term on the right of
Eq. 19.152 depends only on the number of vacancies in the
void because m, and R are related by

_ 4R’

M =730

(19.153)
Similarly, the second term on the right is a function of m;,
which is related to the area of the circular segment added to
the half-sheet of atoms comprising the edge dislocation:

~ b.sf
S Q

m; (19.154)




VOID SWELLING AND IRRADIATION CREEP 485

If the system shown in Fig. 19.21(b) is at equilibrium, the
criterion of chemical equilibrium requires that the Gibbs
free energy given by Eq. 19.151 be invariant when small
perturbhations 6m,, 6m;, dn,, and §n; are applied,

6G = <(j?f] >5m\, + (éa'rgf)ﬁmi + uebng + udn; = 0

The perturbations in the numbers of point defects in each
location are related by the halance:

ém;— &m, = &n, —&n,

The perturbation dm, can be eliminated by combining the
preceding two equations. The resulting equation contains
&my, &n,, and & n;. Since each of these three perturbations is
independent and arbitrary, the coefficients of all three must
be individually equated to zero to attain the minimum
Gibbs free energy of the system, which leads to three

equations:
de o€
(_ar‘n_) ' (ém{>m\, B (19-1oom)

(19.155b)

(19.155¢)

Because we have required equilibrium between the two
types of point defects in the bulk solid (ie., y; = —u,),
Egs. 19.155b and 19.155¢ are equivalent. Thus there are
two independent relations, which serve to fix the equilib-
rium void radius R and the dislocation configuration
(determined, for convenience, by the radius of curvature
AR

The equilibrium void size is obtained from Eq. 19.155b,
which can be written

o€ a€ dR 2y
(3me)_~(om)yam, - ()2
mj
The first term in the product of this formula is, according to
Eq. 19.152, equal to 8rRy, and Eq. 19.153 shows that the
second term is 2/47R?. The chemical potential of the

vacancies is KT In(C, /C$9); so Eq. 19.155b yields

2y Q)
= eq
C, = Ct exp (R KT (19.156a)
and, using the restraint C,C; = C$9Cf9,
2y )
— £Qq — N
C, = Cr? exp ( R KT (19.156b)

Equation 19.156a can be recognized as the equilibrium
concentration of vacancies at the surface of an isolated void
in the solid (i.e., Eq. 19.95).

Combining Egs. 19.155a and 19.155b yields

ae>
+u, =0
(ami m, g

The derivative in this formula is obtained from Eqs. 19.152
and 19.154:

(), 7o)
. =74
’)mi my, arni m,,
., d.s/ <67’
d dmi aof‘/ R

_Tqf2 (O’/')

b a.!‘/ R
The partial derivative in the last line of this set of equalities
(which is taken at constant R because m, is beld constant
in the derivative on the left) is determined solely by the
geometry of Lhe curved dislocation in Fig.19.21(b). In

problem 19.16 at the end of this chapter, (3 ¥ /3.:/)y is
found to be of the form

27 1

e Iy o airy 19.157
(E). ?/)R AR, AN ( )
where the function f(R, .#, 1) approaches unity as the void
radius approaches zero. Combining the preceding three
equations with the vacancy chemical potential yields

O, = o exp (- 74 S (19.15%a)
v v P b-%’f kT o
and, with the restriction C,C; = C$4CFY,
= (04 ey Ta_ Q
C,=Ct Hp(b%’fkT (19.158b)

If either C, or C; is specified, Egs. 19.156 and 19.158
determine the void size R and the dislocation line radius of
curvature .# for a specified void spacing 1, which is related
to the size and density of voids in the solid by Eq. 18.25:

b= 1
(2RN)*

We now examine the case in which the vacancies and
the interstitials are nol in equilibrium (i.e., C;C, # CyaCg9).
This situation cannot be treated by equilibrium meth-
0ds;2® 3% 5o, instead of a thermodynamic analysis, we can
only require that the system be in a stationary state. This
means that the voids are not growing and the dislocations
are not climbing and that the stationary configuration is
affected by kinetic factors as well as equilibrium factors.

The existence of a stationary state requires that the net
flux of point defects to the void and to the dislocation
segment each be equal to zero. Following the argument
applied to interstitial loops in the nonequilibrium solid,
Egs. 19.156a and 19.156b give the concentration of point
defects at the surface of the void, and Eqs.19.158a and
19.158b apply to the surface of the dislocation line
segment between the voids. The concentrations C; and C,
pertain to the bulk solid, far from the void and dislocation-
line surfaces.

The fluxes of point defects to a unit area of void are

(19.159)

Jyoid = 4nRD, (C, — CY°'?)
Jyeid = 47RD; (C; — CY°d)
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where Cy°'d and Cy°i9 are now given by Eqs. 19.156a and
19.156b, respectively. Using these void surface concentra-
tions and the zero net flux condition,

J‘\}'()ld = Jivold

vields
i 2y Q
D,C, — DiC; = D,CLY exp (R7 kT)
2y Q )
— D.Cca —
D;C exp( R KT (19.160)

Similarly, the fluxes of point defects to a unit length of
dislocation line are

J¢=2,D, (€, —C)
I = ZDi (G — €

where C{ and C¢ are given by Egs. 19.158a and 19.158b,
respectively. Using these concentrations at the surface of
the dislocation line and the zero net flux condition,

Jd =Jd
yields
Z.D.C. — Z:D:C: = Z.D.CeY exp [ — RCERY
wiviy T AR T SENIVE SRR T ) kT
— Z.D.(C Td Q
Z:D;C exp (b_m op) (19.161)

If C; and C, are specified, R and 4 could be obtained
directly from Eqs. 19.160 and 19.161.

The point-defect balances are used to determine the
point-defect concentrations in the solid. At the stationary
state that produces termination of void growth, each term
in the vacancy balance of Eq. 19.134 is equal to the
corresponding term in the interstitial balance of
Eq. 19.135. In the saturated void-growth state, both net-
work dislocations and loop dislocations are assumed to be
interconnected to the voids, as shown in Fig. 19.21(b}), so
no distinction is made between them. The point-defect
balances become

9 ¢
vE b - 4TRND, [CV — C&9 exp (27 4 )1]

R kT
Ta §
+ ZypaDy | C, — Cg ——
vPa v[ v C\ exp ( bR kT)]
+4aR N,D,C, + k;, CiC, (19.162)
vZ b = 4rRND; [Cl — C¢9 exp (— %7 kg}I‘)]
Ta
+ ZipaDi [Ci —C exp(b')%,—f ﬁ)]
+ 4mRpN, D, C, + ki, CiC, (19.163)

These equations differ from those which apply during void
growth (Eqgs. 19.136 and 19.137) in that the thermal
emission terms from the dislocation have been altered to
accommodate the picture of interconnected voids and
dislocations in which the latter have ceased climbing.
During growth, network dislocations are free to climb and
dislocation loops are distinct from network dislocations.
However, the two point-defect balances are not inde-
pendent relations when saturation of void growth and
dislocation climb occurs. Equation 19.163, for example,
can be obtained by combining Egs. 19.160 to 19.162.
These three equations contain four unknowns, C,, C;, R,
and .A. They can be solved for .# as a function of R, N, and
pq. Prior to saturation, these three quantities increase by
the void and loop growth and nucleation processes de-
scribed earlier. When R, N, and py attain values such that
Egs. 19.160 to 19.162 yield # = 1/2, a stable intercon-
nected network of voids and dislocations becomes possible,
and void growth and dislocation climb cease provided that
all voids and dislocations are linked together. If any
dislocations are free to climb, however, growth does not
terminate.

Bullough and coworkers? have proposed mecha-
nisms for termination of void growth which are quite
different from the saturation model just described. They
calculate the force exerted on a circular dislocation loop by
a nearby void. This force is determined by noting that the
elastic stress field emanating from an isolated dislocation
(e.g., Eq. 8.7 for a screw dislocation) cannot apply at the
surface of the void, which must be free of all tractions.
Willis and Bullough®' add to the stress field of the
dislocation an image or induced stress field whose magni-
tude and position dependence are determined by the
requirement that the net stresses at the void surface vanish
(the surface-tension force, 2y/R, appears to have been
neglected). Once the field that performs the desired
function at the void surface is found, the induced stress
field away from the surface can be calculated. In particular,
the value of the induced stress at the location of the
dislocation loop enables the glide force and the climb force
on the loop to be computed (by multiplication of the
appropriate stress component by the Burgers vector of the
loop). These forces are shown in Fig. 19.22. If the loop is
unfaulted and of the interstitial type, the glide force is
attractive. That is, if the critical glide stress (analogous to
the critical resolved shear stress) is exceeded, the loop will
glide directly into the void and be annihilated. When an
interstitial dislocation loop is captured by a void, the latter
shrinks by an amount equivalent to the number of
interstitials contained in the loop. In addition to a glide
force, the void—loop interaction induces a climb force on
the loop which causes it to collapse. For this force to cause
loop shrinkage, though, it would need to be greater than
the climb force causing loop growth arising from interstitial
supersaturation of the surrounding solid (Eq.19.153). If
the loop initiaily had a radius greater than that of the void
and could not shrink by the induced climb force, it would be
drawn toward the void and be trapped as a sort of Saturn
ring around the periphery of the void.

In any case, the glide force is always effective in
eliminating dislocation loops with radii smaller than that of

4,31
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Fig. 19.22 Forces on a dislocation loop near a void. (After
Ref. 31.)

the void provided that the loop lies within a capture volume
around the void. The capture volume extends from the void
surface to the radial position where the attractive stress
field due to the void—loop interaction (i.e., the image field,
which decreases rapidly with distance from the center of
the void) is just equal to the critical glide stress. Loops
farther out cannot be started off by the attractive glide
force. For large voids (i.e., R > 500 A), Willis and Bul-
lough®' calculate that the thickness of the spherical-shell
capture volume is ~200 A. Loss of dislocations from this
entire volume around the voids results in cessation of void
growth (because of the absence of the dislocations and their
biasing effect) when the voids are sufficiently numerous
that their capture volumes overlap.

According lo the model just outlined, void-growth
saturation should be accompanied by a drastic reduction in
dislocation density. The expected reduction in dislocation
density is observed in pure metals, such as nickel, after long
irradiation, but it does not occur in stainless steel because
of the greater difficulty in moving dislocations in such an
impure alloy. However, even when the voids do not succeed
in swallowing the dislocations, the induced stress field
created by the necessity of maintaining the void surface
stress-free persists. Voids then appear to contain image
dislocations that preferentially absorb interstitials over
vacancies just as real dislocations do. By this mechanism the
neutrality of the void as a point-defect source is destroyed,
and the void acquires a bias of its own for interstitials. The
rates of poini-defect absorption by voids which harbor
image dislocations are given by multiplying Eqs. 19.95 and
19.96 by W, and W, which are bias factors akin to Z, and
Z; for dislocations and Y, and Y; for coherent precipitates.
Using the modified void sink strengths in the point-defect
balances and in the void growth law leads to replacement of
Z,— Z, in Eq. 19.145 by Z; — W,Z,/W,. When this dif-
ference becomes zero, void growth ceases completely.

19.6 THE VOID CONTINUITY EQUATION
AND VOID SWELLING

Section 19.3 described methods of calculating the rates
at which small voids and dislocation loops reach the critical
size for continued growth. In Sec. 19.4, overall conserva-
tion equations (the point-defect balances) were developed

for vacancies and interstitials to permit calculation of the
instantaneous concentrations of point defects in the bulk of
the solid. These balances require knowledge of the numbers
and sizes of voids and dislocation loops in the material at
the moment that the point-defect balances are applied. This
information is obtained from void and loop conservation
equations, which are derived in this section.

19.6.1 The Delta Function Distribution

Most theories of void growth place a great deal of
emphasis on determination of the void-growth law, R, but
relatively little is said about what is to be done with this
formula once it is obtained. Confrontation of the conserva-
tion equations governing the entire population of voids and
loops in the solid is avoided by assuming simplified size
distributions for these two types of defect clusters.
Specifically, all voids are assumed to be of the same size at
any given time, or the distribution is a delta function
centered on the value of R(t) obtained by integration of the
growth law. Similarly, the loop size distribution is assumed
to be a delta function. This approach is valid provided that
(1) nucleation and growth are distinct, sequential processes
and (2) all void (or loop) nuclei are the same size.

If ali voids and loops are nucleated at the same time and
with the same size and processes that can change the size of
a cluster in large chunks (i.e., coalescence or macroscopic
resolution) are negligible, the void and loop distributions
will remain delta functions throughout irradiation. That is,
with time, all loops and voids simply grow uniformly but
their number density remains constant. The void size at any
time is determined by simultaneously integrating the
void-growth law of Eq. 19.139 and the analogous growth
laws for loops. Because of the complex dependence of R on
R, numerical integration is generally required.

The zero in time (or fluence) for growth is the end of
the nucleation stage, which for stainless steel is taken to be
the incubation fluence of 10?2 neutrons/em? required
before any voids are observed. It is assumed that the
nucleation process provides N voidsjem® of starting size R,
{the radius of the critical nuclei) and N, loops/cm® of initial
size Rj.. By integration of the growth laws, R(t) and Ry(t)
are determined, and the swelling at time t (or fluence () is
calculated from Eq. 19.10. This approach is followed by
Brailsford and Bullough.?®

19.6.2 Eulerian Void Continuity Equation

When the nucleation and growth processes overlap in
time, the void and loop conservation equations cannot be
circumvented. In this instance, void and loop size distribu-
tions evolve during irradiation. The voids and loops present
al a particular time arise from nuclei produced from the
beginning of irradiation up to the time in question, and
hence a distribution of sizes must be present. The con-
tinuity equation for voids was derived by Sears.>? It is
similar to the continuity equation for fission-gas bubbles in
the fuel (Chap. 13).

The void distribution function N(R,t) dR is the number
of voids per unit volume with radii between R and R + dR
at time t. It is convenient to begin with a slightly different
distribution function, N(m,t), which is the number of voids
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per unit volume containing m vacancies at time t. Inasmuch
as R and m are related by

4nR?
= .164
m=-=5 (19.164)
the two distribution functions satisfy
N(R,t) = (475 ) N(m,t) (19.165)

Let us define the current of voids in size space, [, as the
number of voids passing from size m to size m + 1 per unit
volume per second. Here I, is similar to the nucleation rate
considered in Sec. 19.3 except that it is defined for void
sizes well beyond the critical void cluster size to which
nucleation theory is restricted. The rate per unit volume at
which voids enter the size m class is I,..;. The rate at
which voids leave this size class is I,,,. Therefore, the void
conservation statement is

oN ol .

2N — . .2 (19.166)

ot I m om '
Because I, varies slowly with m, the difference I,, _;— Iy

can be approximated by the derivative indicated on the
extreme right side of the above equation. Equation 19.166
applies only if the nucleation process does not produce
voids of size m (i.e.,, if m > m.). The current I, is given by
Eq. 19.40, but for simplicity the thermal emission term is
neglected in the present analysis (it can be easily rein
stated). Thus

Ly = Bvlm) Nim,t) — fi{m+1) N(m+1,t)

~ (3, - ) N(m,t)  (19.167)

where the difference between 3;(m+1) N(m+1,t} and g;(m)
N(m,t) has been neglected. The arrival rate 3, is given by
Eq.. 19.37 in which the denominator is very near unity
because the voids are large. The formula for j3; is the same
as that for B, if the subscripts are appropriately altered and
I,, can be expressed in terms of the growth law by noting
that Eq. 19.138 (without the thermal emission term) can be
written as

Q
47R?

If Eq. 19.167 is inserted into Eq. 19.166, the size variable is
changed from m to R by Eq. 19.164, the distribution
function is changed from N(m,t) to N(R,t) by Eq. 19.165,
and Eq. 19.168 is used, the void continuity equation is
found to be

R =8, —8) (19.168)

ON o -

ot~ ar BN
which is valid for t > 0 and R > R, the radius of the
critical void nucleus.

(19.169)

In addition to the growth law R, Eq. 19.169 requires an
initial condition and a boundary condition (only one of
each, since the equation is first order in each variable). The
initial condition is

N(R,0) =0 (forall R) (19.170)

which states that the metal contains no voids at the start of
irradiation.

The boundary condition is related to the nucleation
process, which proceeds simultaneously with growth. It is
usually assumed that all void nuclei enter the solid as small
clusters containing m, atoms at a rate [, ,.; cm ™ sec”' . The
critical void size and the nucleation rate are prescribed by
nucleation theory for the prevailing point-defect supersatu-
rations (Sec. 19.3). The balance equation for voids of size
m, is

ON(m.,t) _

- Lnwet = Im, (19.171)

where 1, is the current of voids passing from size m, to
the next largest size. It is generally sufficient to apply a
quasi-stationary approximation to Eq. 19.171 and equate
Inuer to I, With the same manipulations used to obtain
Eq. 19.169, the steady-state form of Eq. 19.171 provides
the boundary condition

N(Rc,t) = Inu'cl (t)
C
where Rc is the growth rate of the critical size void nucleus.

Equations similar to Egs. 19.169 and 19.172 are needed
for dislocation loops as well as for voids. For loops,
unfaulting of sessile loops to form glissile loops would have
to be added as a loss mechanism, and an additional
conservation equation would be needed to describe the
time rate of change of the network dislocations as well.

Determination of the void and loop distribution funec-
tions requires simultaneous solution of the conservation
equations for these defect clusters together with their
growth laws. Note that calculation of the evolution of the
void and loop populations during irradiation is no longer
simply a matter of integrating the growth laws. Rather, the
growth laws must be integrated in the form that they
appear in the void and loop conservation equations, where
R and Ry are multiplied by N and N, in a derivative. At any
time t, the swelling is given by Eq. 19.9.

This unified approach to void swelling has been applied
in the computer program developed by Li et al.,?' a flow
chart of which is shown in Fig. 19.23. They employed the
conservation equation (Eq. 19.169) and the analogous partial
differential equation for loops in terms of the m variable
(for voids) rather than the R variable as was done here. A
multigrouping scheme was used to reduce the size of the m
increments. A similar method was used by these authors in
connection with bubble growth by coalescence (Eq. 13.201
is analogous Lo Eq. 19.169).

(for all t) (19.172)

We do not present any results of either the delta
function Brailsford—Bullough method of calculating void
swelling or the Li—Harkness unified approach. The former
is very good on the growth law but does not account for
continued nucleation of new voids and loops during
irradiation. The latter treats the void distribution function
more realistically but incorporates inaccurate nucleation
theory and does not contain the detail in the growth laws
that the Brailsford—Bullough method provides. Despite
these shortcomings of each method, there are enough
unknown physical quantities in each model to provide a
sufficient number of adjustable parameters to fit the
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INPUT  1RRADIATION CONDITIONS
DISLOCATION DENSITY
GRAIN SIZE
PRECIPITATE DISPERSION
TIME INCREMENT

CALCULATE DIFFUSION COEFFICIENTS

CALCULATE THERMAL VACANCY POPULATION

CALCULATE NUMBER OF VOIDS AND DISLOCATION
LOOPS FORMED UP TO PRESENT TIME INCREMENT

CALCULATE THE STEADY STATE VACANCY AND
INTERSTITIAL POPULATIONS IN TERMS OF
AVAILABLE SINKS

CALCULATE VOID AND LOOP NUCLEATION RATES

CALCULATE INCREASE IN VOID AND LOOP VOLUME
IN TERMS OF THE EXCESS VACANCY FLUX TO VOIDS
AND THE EXCESS INTERSTITIAL FLUX TO LOOPS

CALCULATE AVERAGE VOID AND LOOP RADII IN
TERMS OF THE NUMBER DENSITY AND THE VOLUME
OF EACH DEFECT

HAVE ENOUGH TIME INCREMENTS
BEEN COMPLETED TO EQUAL TIME NO =
r IN REACTOR?

YES

l PRINT THE OVERALL VOID VOLUME, AVERAGE
VvOID AND LOOP RADIH, AND VOID AND LOOP
NUMBER DENSITIES

Fig. 19.23 Flow chart of a computer program for calcu-
lating void swelling. (After Ref. 21.)

experimentally observed void-swelling patterns discussed in
Sec. 19.2, Neither model needs outlandish values of the
adjustable parameters to qualitatively reproduce a wide
variety of experimental results, which implies that the basic
concepts of the models are sound. This sort of semiagree-
ment between theory and experiment means that the model
calculations are best used to extrapolate existing data rather
than to determine absolute swelling from first principles.
The theory is an aid to experiment but certainly cannot
supplant the continued acquisition of data on void swelling
by fast-neutron irradiation.

19.6.3 Lagrangian Void Continuity Equation

The method of accounting for the change in size and
density of loops and voids during irradiation which was
described above is Eulerian in nature because it follows
flows of defects into and out of a fixed interval of cluster
size. For some special cases a Lagrangian approach may be
more useful. The void conservation equation can be
succinctly derived by noting that all voids in the size range
R to R + dR at time t arise from nuclei created (at size R)
in the time interval 7 to 7 + d7, or

N(R,t) dR =1, ,ci(7) dT

which can be rearranged to give

N(R,t) =T uer [T(R,D)] ((%{Tf) (19.173)
t

The problem is to determine the relation between 7 and the
variables t and R in order that the argument of I, ,.; and
the Jacobian (87/0R); be expressed in terms of these
quantities. This identification is accomplished by regarding
the function R(t,7) as the radius at time t of a void
nucleated at time 7, which can be obtained by writing the
growth law as

dR .

i R
Equation 19.174 can be integrated provided that R is
known explicitly as a function of R and t. That this is
usually not the case is the reason that the Lagrangian
approach is restricted to special situations. Sears®? con-
siders the artificial case in which C, and C; are independent
of R (which, in general, is not true because the point-defect
balances depend on the void average size). In this case
Eqgs. 19.174 and 19.138 can be combined and integrated to
give

(19.174)

t
R2(t,r) = R? + 202 J, (D,C, — D,C)dl’  (19.175)

If the integral on the right can be performed (i.e., if the
time variations of C, and C; are known a priori),
Eq. 19.175 can be solved for 7 as a function of R and t, and
the right-hand side of Eq. 19.173 can be expressed entirely
in terms of the last two variables.

A more realistic case in which a Lagrangian defect
conservation equation is employed in the analysis of
thermal annealing of depleted zones is discussed in
Sec. 18.5.

19.7 IRRADIATION CREEP

Irradiation creep refers either to augmentation of
thermal creep by irradiation or to development of creep
under conditions in which thermal creep is absent. The
former is termed irradiation-cnhanced creep, and the latter
is known as irradiation-induced creep. A sizeable number of
thermal creep mechanisms have been identified (see
Sec. 16.6), and an even greater number of irradiation creep
theories have been proposed.>> To be classed as irradiation
creep, the applied stress must cause nonuniform deforma-
tion of the solid (not just swelling), and the deformation
rate must change when the fast-neutron flux is altered.

Irradiation creep theories applicable to austenitic stain-
less steels can be divided into two broad categories, the
distinction resting on whether or not irradiation-produced
distocation loops and voids are involved in the creep
process. Inasmuch as the nucleation of these clusters is
strongly temperature dependent, the two regimes are
equivalent to low and high temperatures. The boundary
occurs roughly at the minimum temperature for void
formation (~350°C in stainless steel).

High-temperature irradiation creep is usually ascribed to
(1) stress orientation of nucleating dislocation loops or (2)
accelerated climb of dislocations followed by glide.
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Two types of low-temperature irradiation creep have
been identified. The first is a transient creep due to climb
of pinned segments of the dislocation network in the solid,
and the second is a steady-state form of creep arising from
collapse of vacancy loops. Figure 19.24 demonstrates the
simultaneous operation of (ransient and steady creep at low
temperatures. After a long time of irradiation at a high
stress, the load on the in-pile lest specimen is reduced. The
vertical line on the left of the graph represents immediate
elastic strain recovery, following which an incubation
period of ~2000 hr is required before establishment of
steady-state irradiation creep characteristic of the lower
stress level. The strain offset between the end of the elastic
recovery and the backward extrapolation of the new

STRESS
REDUCED

-

TRANSIENT CREEP

ELASTIC RECOVERY\

STRAIN

STEADY -STATE CREEP
e (SLOPE  Cuo)

TIME, 103 hr

Fig. 19.24 Strain recovery in type 304 stainless steel
irradiated at 100°C following a stress reduction in pile.
(After E.R. Gilbert and L.D. Blackburn, in Second
International Conference on the Strength of Metals and
Alloys, p. 773, American Society for Metals, 1970.)

steady-state creep line represents the amplitude of the
transient component of the low-temperature irradiation
creep. The data in Fig. 19.24 can be represented by the
formula:

€= Ao[l —exp (— %)]+ Cadt (19.176)

The first term on the right represents the recoverable
transient strain. The steady-state creep rate is contained in
the second term. Here, we explain the mechanisms by
which these two forms of low-temperature irradiation creep
occur and provide estimates of the constants A, B, and C in
Eq. 19.176.

19.7.1 Transient Creep

Models of transient irradiation creep have been ad-
vanced by Hesketh®* and by Lewthwaite and Proctor.®® A

stightly modified form of Heskelh’s analysis will he
reviewed here.

Consider a metal in which the dislocation density is pq.
The dislocalion network is modeled as a cubical grid of
dislocation segments, with the distance between junctions
where the segments of dislocation line are pinned
(Sec. 13.12) given by

()
Pa

Since the theory is designed for temperatures well
below the temperature of void formation, we will assume
that the vacancies produced by the collision cascades are
immobile. The vacancy and interstitial diffusion coeffi-
cients in stainless steel are approximately given by D, ~
exp (—c%/kT) and D; ~ exp (—¢¥/kT}, where the diffu-
sivilies are in square centimeters per second, ¢* -~ 125
kd:mole, and ¢~ 13 kdmole. At 100°C, D, ~ 107"
em?isec and D;~ 1072 em?®isec. The mean lifetime of a
point defect can be estimated from Eq. 7.24 if the
root-mean-square displacement of an atom at time t is
identified with the size of the dislocation network. Taking
r? equal to 17 ~ 107 % em? (for py = 10'® cm™2) and the
above values of Lhe point-defect diffusivities, we find the
average time for a vacancy Lo reach a dislocation is ~ 107
sec, whereas an interstitial is absorbed in ~10™° sec. Thus, it
is a fair approximation to consider the vacancies as tolally
immobile and the interstitials as mobile enough to maintain
quasi-steady-state concentrations of this defect at all times.
The basic results of the analysis do not depend on this
restriction, bul the analysis is simpler than the case in
which both species are mobile.

Consider a specimen that has been irradiated in a
stress-free state for a time long enough to establish a
steady-state microstructure (the irradiation-produced inter-
stitials cause the pinned segments of the dislocation
network to climb until the line tension of the curved
dislocation balances the chemical stress due to the inter-
stitial supersaturation). During the initial irradiation
soaking, no creep occurs since no stress is applied.
Figure 19.25 shows a representative cube of the dislocation
network of the solid during irradiation. Each of the sides of
the cube is assumed to consist of segments of edge
dislocations of length 1. The Burgers vectors of the segments
are randomly oriented. Bowing of the dislocations under
irradiation is depicted as the circular segments terminating
at the pinning points (for clarity, only one-half of the
bowed segments are shown in the drawing). The segments
take on this configuration because of absorption of
interstitial atoms from the irradiated solid; so the shaded
circular segments represent extensions of the half-sheets of
atoms of which the edge dislocations consist. The accumu-
lation of excess interstitial atoms by the dislocation
segments cause each of them to acquire a common radius of
curvature .#2. The small irregular shapes within the cube in
Fig. 19.25 are intended to represent the depleted zones
which are formed in the collision cascade and which are
stable against thermal annealing at low temperatures. The
depleted zones are vacancy agglomerates.

Because irradiation creates equal numbers of vacancies
and interstitials, a conservation condition relates the extent

(19.177)
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Fig. 19.25 Bowing of the segments of a dislocation net-
work in an irradiation field. No stress is applied.

of climb of the dislocation segments, the number and size
of the depleted zones, and the point-defect concentrations
maintained by irradiation in the solid. The sum of the
number of interstitials associated with the bowed disloca-
tion lines and the bulk interstitial concentration C; must be
equal to the sum of the number of vacancies contained in
the depleted zones and the bulk vacancy concentration C,.
This condition is independent of the point-defect balances,
which equate the rates of production and destruction of
each type of point defect.

The number of interstitial atoms associated with the
bowed dislocation segments is obtained as follows. The
cube shown in Fig. 19.25 contains 12 segments, but each of
these is shared among four neighboring cubes; thus there
are three segments associated with a volume I® of solid.
With Eq. 19.177, the number of segments per unit volume
is pg/l. If the areas of the shaded circular segments in
Fig. 19.25 are called .s/, the number of interstitial atoms
contained in each is b.//S2. The area .»/ is a function of the
radius of curvature .& and the cube slide 1. The number of
interstitials per unit volume contained in the bowed
segments is b.a/pq [1€2.

At steady state, there will be a distribution N(R) of
depleted zones, in which R, the zone radius, ranges from
the maximum size created in the collision cascade, R, to
zero size (see Sec. 18.5). A zone of radius R contains
47R732 vacancies. Thus, the balance on the total number
of point defects can be written*

*A conservation statement analogous to Eq. 19.178
cannot be made during void growth because, in this
instance, the dislocations are considered free to climb.
Point defects can thus leave or enter a particular unit
volume of solid by the motion of climbing dislocations. In
the present situation, no point defects cross the surface of
any unit volume in the solid, and correctly accounting for
the fate of the nonrecombined point defects in this closed
system leads to Eq. 19.178.

bpd.ﬁ’/= ﬂ
TR

R, .
G +- J; R N(R)dR (19.178)

The point-defect balances are

b, 2b = kiy GG,y (19.179)

Py 2D = Zipg Di(C; — C) + ki GG,y

R()
+47D,C; [ RN(R) R (19.180)

Because of the assumption that the vacancies are immobile,
they do not diffuse to dislocations or to depleted zones.
Vacancies are removed from the solid only by recombina-
tion with migrating interstitials. The interstitial balance
(Eg. 19.180) is the same as that employed in the analysis of
depleted-zone annealing (Sec. 18.5) except for the concen-
tration of interstitials at the dislocation surface. In the
annealing study the dislocations were assumed free to
climb, and C{ was equal to Cf% ~ 0, When the dislocations
are pinned and climb is stopped by line tension, the
interstitial concentration at the surface of the dislocation
rises from C{? for a straight dislocation free to climb to a
value given by Eq. 19.158b when the line assumes a finite
radius of curvature. When no voids are attached to the ends
of the pinned segment, the factor f in Eq. 19.158b is unity,
and Cid for the present analysis is given by

Ta 2

bR KT (19.181)

C! = Cf% exp [

Recalling the analysis of depleted-zone annealing in

Sec. 18.5, the number of interstitials and free vacancies

(i.e., vacancies not contained in nascent depleted zones) are
related by

_, L 4A1Rg
R IT))

(19.182)

The distribution of depleted zones, N(R), has been
derived in the depleted-zone annealing analysis of Sec. 18.5.
In the present application the vacancies are assumed to be
immobile; thus Eq. 18.48 becomes
PR
D;C;2
If Eq. 19.179 is subtracted from Eq. 19.180, the difference
v; — v, is taken from Eq. 19.182, and the distribution of
Eqg. 19.183 is used in the integral of Eq. 19.180, we find
that the point-defect balances require that C; = C{, or, with

Eg. 19.181,
T_d_=ﬂl _C.i.,
bR O "\ce

The left-hand side of this equation is the applied stress
needed to bow a dislocation line to a radius of curvature 4.
The right-hand side is the effective, or chemical, stress on
the dislocation line due to the interstitial supersaturation.

Equation 19.178 provides an additional relationship
between C; and 4. The integral can be removed by use of
Eq. 19.183, and C, can be expressed in terms of C; by
Eq. 19.179, yielding

bpar/ v, 2sb  4m 2, RG

Pt
L) ki G, 15 QDG

N(R) = {19.183)

(19.184)

(19.185)
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The radius 4 is contained in Eq. 19.185 in the area .+/ (see
problem 19.16 at the end of this chapter). Simultaneous
solution of Egs. 19.184 and 19.185 yields C; and ..

If the value of & determined by this method is less
than 1/2, the configuration shown in Fig. 19.25 cannot be
maintained. In Eq. 19.184

fa L qge
bR kT
for most metals at low teniperatures (~100°C). For a metal
with a dislocation density of 10'% em™, the minimum
value of .# (equal to 1/2) is ~10°° cm. Therefore,
Eq. 19.185 limits the allowable interstitial supersaturation
for the maintenance of a stable configuration of bowed
dislocation segments of C;/Cf9 < 10*. If the dislocation
density is 10'? ¢m™?, however, the maximum permissible
supersaturation of interstitials is 10%°.
To approximately calculate C; from Eq. 19.185, assume
that the dislocation segments have bowed to nearly
semicircular configurations (.# ~ 1/2), so

cm

1 2 _ml?
o 27r-#? =g

Eliminating 1 in favor of pgq by using Eq.19.177,
Eq. 19.185 becomes

3" L] prOY @
26 [‘T b(p‘m]_ D
Yo 4w RJY 1
x(—+255)o5n (19186
(ziv+15 sz) QG (19.186)

where the vacancy—interstitial recombination coefficient,
ki., has been expressed by Eq. 13.42 with a, ~ b. Using
representative values of the constants in Eq. 19.186, we
find that the second term on the left-hand side is very much
larger than the coefficient of 1/£2C; on the right-hand side.
Therefore, the solution of the quadratic equation is

4n RS

5 Q?) 3.0 (19.187)

8 b v,
Ty (Pd)l&Di(Ziv+
and .4 is determined by substitution of Eq. 19.187 into
Eq. 19.184.
For a flux of 10'* neutrons em™ sec™!, Ry ~ 8 A, and
a dislocation density of 10'? cm™, Eq.19.187 gives
C; ~10° em™. The thermal equitibrium vacancy concentra-
tion at 100°C is about 107® em™, so the vacancy
supersaturation is ~10°?. This supersaturation is just a bit
smalter than the value which, by Eq. 19.184, causes the
dislocation segments to climb beyond the semicircular
configuration (.# = 1/2). Thus, the preceding analysis is
limited to metals of high dislocation density and low fluxes.
As the temperature is increased (which increases C{9), these
restrictions are less stringent than they are at ~100°C.
Hesketh®* discusses the consequences of interstitial super-
saturations that are large enough to cause the dislocations
to be pulled free of their pinning points by the chemical
stress.
During the irradiation period preceding application of
the stress to the specimen, all the dislocations climb by the
same amount by absorption of excess interstitials. When

uniaxial tension in the vertical direction in Fig. 19.25 is
applied, the edge dislocations whose extra half-layer of
atoms is perpendicular to the direction of the applied stress
(i.e., those with Burgers vectors parallel to the stress
direction) are induced to climb because the stress reduces
the concentration of interstitials at the dislocation core.
These dislocations are identified as ““perpendicular type” in
Fig. 19.25. They constitute one-third of all the dislocation
segments in the solid. The remaining two-thirds of the
dislocation segments have their Burgers vectors at 90° to
the stress axis, or the extra half-sheet of atoms is parallel to
the stress direction. These segments, labeled “parallel type”
in Fig. 19.25, are not directly affected by application of the
stress.

At the final steady-state configuration achieved follow-
ing application of the stress, the radius of curvature of the
perpendicular-type dislocations changes from 4 to &,
and that of the parallel-type segments changes from A& to
A . The interstitial concentrations at the cores of these
two dislocation types are altered from the stress-free value
given by Eq. 19.181 to

(e, = cge eXP(—Td— L )exp (— @) (19.188)

bR, kT KT
and
d) - cea Ta 8
(C{')y =Ci% exp (b.%’\\ kT) (19.189)
The point-defect balances become
v, 2 = Kk, CiCy (19.190a)
and
3 1 ! ~d
viZe® =3 ZipaDi [C; = (CT) ]
2, , d
+ EZiPdDi [Ci —(C )]
H()
+ k;, CiCy + 47D,C; f RN(R)dR  (19.190b)
V]

where C; and C, are the concentrations of point defects in
the bulk solid after the system has come to equilibrium
with the applied stress. The depleted-zone distribution is
given by Eq. 19.183 with C, replaced by C;. Following the
procedure used in the stress-free condition, satisfaction of
the point-defect balances requires that the bracketed terms
in Eq. 19.190b both vanish, or Eq. 19.184 is replaced by
two conditions:

Y IR In (c;-’q (19.191)
T _KT (G
bR £ n(qu) (19.182)

The overall balance of point defects, which was expressed
by Eq. 19.185 in the absence of stress, now becomes

EETVIR ] 3 1/ kC, 15Q2DC;

i

(19.193)

where ./, and s/ are climb areas corresponding to the
radii of curvature 2, and .. respectively. The final
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configuration of the dislocations in the stressed solid can be
determined by solving Egs. 19.191 to 19.193 for C;, A ..
and Ay. Inasmuch as the changes in the interstitial
concentration and the radii of curvature of the two types of
dislocations due to application of the stress are small
compared to the values of these quantities established by
prior irradiation, the new values can be expressed by

d.+/ 1 1
-7/\ = .,'/ +[>dT]’,/A")]<7A’T b .’A’) (19194)
I B A Y , .
ol = e [d(l.ﬁ?)](%ﬂ .ﬁ’) {19.195)
Ci =G+ (19.196)

Solution of kgs. 19.191 to 19.193 using the above forms
with 8C;/C; -~ 1 is treated in problem 19.17 at the end of
this chapter. To keep algebraic manipulations to a mini-
mum, we make the even cruder approximation 6C; ~ 0, or
C; ~ C;, which permits the right side of Eq. 19.191 to be
replaced by the left side of Eq. 19.184, or

Tq lnﬁl):
b(.//?l #) 7

Sinee the applied stress is positive (tension), Eq. 19.197
shows that ., < .#, or the perpendicular-type dislocations
advance slightly upon applicalion of the stress. This means
that atoms are added to the bowed dislocation segments
which lie at right angles to the stress axis. This transfer of
matter results in deformation, or strain, in the direction of
the applied stress, the magnitude of which may be
determined as follows.

Figure 19.26 shows a block of the irradiated metal with
initial dimensions X, Y, and Z. One internal plane con-
taining a perpendicular-type dislocation segment and two
planes with parallel-type segments are shown in the sketch.
The shaded crescent shapes represent the area changes due
to application of the stress. For the perpendicular-type
dislocations, the change in area is .o/, — .o/, The solid
shown in the figure contains (p4q/DXYZ dislocation seg-
ments of length 1, one-third of which are of the perpen-
dicular type. When these expand by s/, —.#/, a total of

(19.197)

1 pd b _
37 (XYZ) a (ady — 2l

atoms are moved to planes perpendicular to the stress axis.
Or the volume displaced in §2 times the above expression,
which is related to the deformation in the stress direction,
5X, by

8X (YZ) = atoms moved X §2

Combining the above two expressions yields the terminal
creep strain:

(19.198)

The area change .o/, — .#/ can be obtained from
Eq. 19.194, in which the difference in the reciprocal radii
of curvature is expressed by Eq. 19.197, and we have

_pabiof dol
d(1/R)

3lrq |d(1/48)
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Fig. 19.26 'Transient irradiation creep due to bowing of
pinned dislocation segments.

In problem 19.16 at the end of this chapter, the bracketed
term in the above formula is shown to be expressible in the

form

. d‘ylﬂ :.E F }

d(1/#) 12 LR
where F approaches unity as 1/4 ~ 0 but becomes large as
the semicircular configuration (.4 = 1;2) is approached. The
dislocation-line tension is approximately equal to Gb®.
where G is the shear modulus; so the terminal creep
becomes

(19.199)

o _Pal’F(1(A)
36G
Noting that according to Eq. 19.177, p41* = 3 and replacing
the shear modulus G by Young’s modulus
E=2(1+v)G ~ 3G, we have
F(1/R) /o F(1]8)
€= _I__(E)_ 77?4“ € elastic (19.200)

If F(1/4#) ~ 1, Eq. 19.200 predicts that the amplitude of
the transient strain should be one-fourth the elastic strain.
This prediction is consistent with the experimental results
shown in Fig. 19.24, in which the elastic recovery following
stress reduction is several times larger than the magnitude
of the transient strain recovery which follows. Lewthwaite
and Proctor®S report transient strains as large as three times
the initial elastic deflection, which may be due to values of
F(1/4) larger than unity, owing to bowing of the
dislocation to a nearly semicircular shape.

Comparison of Egs. 19.176 and 19.200 indicates that
the theoretical value of the constant A is
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A= F_(li/',’i}

19.201
AE ( )

The terminal creep strain attained when an irradiated
specimen is stressed at low temperatures depends on the
flux to which the specimen is exposed. The coefficient A
given by Eq. 19.201 is proportional to the geometric factor
F(1/ /) given by Eq. 19.199, which increases as .4 de-
creases. According to Eq. 19.184, .# becomes smaller as
the interstitial concentration C; becomes larger, and, by
Eq. 19.187, C; is directly proportional to the flux &. This
effect may be responsible for the larger values of the
coefficient A observed by Lewthwaite and Proctor,’® who
irradiated their specimens in a fast reactor with a fast-
neutron flux of ~2 x 10'* neutrons em™ sec”!, compared
to the A values reported by Hesketh,®* which were based
on irradiations in a thermal reactor wherein the fission flux
was ~4 X 10'3 neutrons cm™ sec™!.

However, the major irradiation dependence of the
transient creep mechanism we are considering here lies in
the exponential term in Eq. 19.176. This equation shows
that in the absence of irradiation the expected terminal
creep strain would take infinitely long to be attained.
Rather than attempt to compute B directly from the
theory, we follow the technique used by Hesketh®* and by
Lewthwaite and Proctor®® of computing the strain rate at
the moment that the stress is applied. This initial strain
rate, denoted by ¢, is related to the constant B by

Aod

B=— (19.202)
€a

The exact time variation of the strain is more complex than
the simple exponential form given in Eq. 19.176, but the
estimate based on Eq. 19.202 at least gives the correct
initial strain rate.

From Eq. 19.198 the initial strain rate is

e —Pab (dJ’ll)
"7 31 \ 4t /=0

where zero time is when the stress is applied to the
specimen. If m; is the number of atoms contained in the
curved dislocation segment,

where dm;/dt is the rate of flow of interstitials to the
dislocation segment,

am; _ q,
13

dt

where | is approximately the length of dislocation line
between pinning points and J¢ is the flux of interstitials per
unit length of perpendicular-type dislocation line. Prior to
application of the stress, the flux of interstitials to the
dislocation lines is zero because the system is at equi-
librium. However, application of the stress reduces the
interstitial concentration at the core of the perpendicular-
type lines, thus inducing an interstitial flux of

I8 = ZDy[C; — (Cf)10]

where (Cf‘)w is the interstitial concentration at the core
of the perpendicular-type dislocations at the moment that
the stress is applied. Assembling the preceding four equa-
tions yields

PaSZD; [C;— (€l o] (19.203)

P 1
=3
Just before the stress is applied, the concentration of
interstitials at all dislocations in the solid is given by
Eq. 19.181. After the specimen has been held at constant
stress long enough for the new equilibrium configuration of
the line segments to be attained, the interstitial concentra-
tion at the perpendicular-type dislocations is given by
Eq. 19.188. However, at t =0, the radius of curvature is
still equal to the unstressed value .4, but the interstitial
concentration at the dislocation core is instantaneously
reduced by the second exponential term in Eq. 19.188.
Therefore

2 2
(CH) o = C exp (bTA‘;? l—i—) exp (— %S,—T) (19.204)

If we expand the second exponential term in a Taylor
series, the driving force in Eq. 19.203 becomes

Tq §2
Ci = (€10 = G~ i exp (5(;? k"T‘)

\ 74 S§2 of2
+ Y e BRL A ¥ Bl
G exP(b%’kT)(kT)

Now, according to Eq. 19.184, the first two terms on the
right-hand side of this equation are equal to each other, and
the coefficient of o£2/kT in the last term is equal to C;.
Therefore, Eq. 19.203 becomes

afl

. 1 i
€= gpdSZZlD,Cl ﬁ‘

Since C; is not significantly changed at the instant of
application of the stress, C; in the above formula is given by
Eqg. 19.187, and the initial strain rate is

(19.205)

-8 Zaﬂzvb(pa)“’(zl ,4r RE
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Substituting Eqs. 19.205 and 19.201 [the latter with
F{1/) ~ 1] into Eq. 19.202 yields the coefficient B,

%7 kT

B= -
32

i R (19.206)
2 EZ,Q%b(pg)* (LV =1 ~°)
s IQ b(pd) Zy + 15 sz

Evaluating Eq. 19.206 for pq = 10'? em™ yields B ~ 10%°
em, which is of the order of magnitude of the value of
this parameter observed by Lewthwaite and Proctor.’’
Equation 19.205 indicates that the higher the dislocation
density, the more rapidly is the terminal creep strain
achieved. This prediction is also in accord with measure-
ments of transient creep in cold-worked and annealed
stainless steel,> 3
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19.7.2 Steady-State Irradiation Creep
by Vacancy Disk Collapse

Although dislocation loops i“-rmed by condensation of
excess vacancies are not observed in the microstructure of
metals irradiated above the low-temperature limit for void
formation, vacancy loops are formed and persist during
low-temperature irradiations. Vacancy loops are produced
by collapse of platelets or disks of vacancies | Fig. 18.4(a)].
The latter are formed from the vacancies and small vacancy
clusters in the depleted zone of a displacement spike. The
mechanism by which the configuration shown in Fig. 17.27
transforms into a disk of vacancies is not known, but such
platelets must be the intermediate step between the
formless collection of vacancies in a displacement spike
core and the regular configuration of a vacancy loop
condensed on a close-packed plane. At the low tempera-
tures where vacancy loops are observed, homogeneous
nucleation of these defect clusters from the free vacancies
in the matrix is virtually impossible because of the low
value of the vacancy diffusion coefficient. Therefore, the
vacancy platelets or vacancy loops must have originated
from the complement of vacancies in the depleted zone
created by the primary knock-on atom. Hesketh®® has
proposed a theory of irradiation creep based on the effect
of stress on the propensity of vacancy disks to collapse into
vacancy loops. This theory is reviewed here.

The process by which the depleted zone is transformed
first into a vacancy platelet and then into a vacancy loop is
depicted in Fig. 19.27. If 'the depleted zone contains m
vacancies (either isolated or in small clusters), the radius of
the vacancy platelet, R, formed from these vacancies is

(19.207)

The disk is assumed to be 1 atom layer thick (i.e., a
thickness equal approximately to a lattice constant a,).
Figure 19.27(b) shows the platelet as a circular disk.
However, computer simulation of the stability of shapes of
this sort in metals shows that the disk will partially collapse
near the center, in somewhat the same fashion that
neighboring atoms relax into a single vacant lattice site. The
relaxed or minimum-energy configuration is shown in
Fig. 19.27(c). The computer studies also show that the
distance separating the opposite faces of the platelet at the

center, s, is given by
)
s=a,|1——=
(-,

where R, is the critical platelet radius beyond which total
collapse into the loop of Fig. 19.27(d) is assured. The
critical radius is related to the number of vacancies in the
critical size disk by

(19.208)

(19.209)

When R = R, (or m = m,), the two faces of the disk just
touch at the center, and this is the necessary condition for
collapse of the entire platelet into a loop. Hesketh assumes
that in small disks (m < m,) the platelets retain the

a
O a
0 n [] () DEPLETED ZONE CONTAINING
m VACANCIES
a a
a
__{_ !
b
a, (b} VACANCY PLATELET
! {UNRELAXED]
T |<—R—>{

{c) VACANCY PLATELET
{RELAXED)

if m>>m,

<4 ———}F (d) VvACANCY LOOP

Fig. 19.27 Formation of vacancy disks and loops in an
irradiated solid at low temperature.

configuration shown in Fig. 19.27(b) and that in disks
larger than the critical size the platelets collapse to the loop
configuration shown in Fig. 19.27(d).

We next determine how an applied stress perpendicular
to the faces of the disk affects the critical size for collapse.
Figure 19.28(a} shows that a compressive stress tends to
reduce the central separation of the two faces. Conversely,
tension would tend to bulge the two faces outward. The
change in separation, s, due to the stress, o, can be
estimated by adapting the solution to a similar problem
which has been treated by classical elasticity theory; this
results in

s(a) ~ s(0) f~éRa (19.210)
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Fig. 19.28 Effect of stress on the shape of vacancy
platelets.

where s(0) is the separation of the faces at stress o and E is
Young's modulus.* The stress effect suggested by
Eq. 19.210 is plausible. Stress is more effective for large
disks than for small ones and for weak solids (low E} than
for strong ones.

Figure 19.28(b) shows the disk that contains just the
right number of vacancies to render s{(g) = 0 (i.e., collapse
occurs at this stressy. The radius of such a disk, R.(0), is
less than the critical radius for collapse of a disk in a
stress-free solid. The dashed lines show the configuration of
a disk of the same radius when o= 0. The interplanar
separation s(0) can be obtained from Eq. 19.208 by setting
R =R.(o)and R, = R.(0):

(0) = a 2Re
s(0) = a, R,
wheie AR, = R.(0) — R (o) and R.(0) in the denominator
has been denoted simply by R,., since AR, is small
compared to either R (u) or R.(0).

Another expression for s(0) can be obtained by setting
s(g) =0at R =R, in Eq. 19.210, which gives

(3]

s(0) =—%Rco

Equating ihe right-hand sides of the above two equations
permits R, to be written as

*A factor 1 — v?, where v is Poisson’s ratio, has been
omitted from the second term on the right of Eq. 19.210
for simplicity. This factor is retained in Hesketh’s analysis
but is of no consegquence numerically.

2
ARc=é&o

E a, (19.211)

The stress effect can be expressed in terms of the change in
the number of vacancies in the critical-size disk by use of
Eq. 19.209:

dR, o
Substituting Eq. 19.211 into Eq. 19.212 and eliminating
the ratio (R./a,)® by using Eq. 19.209 yields

8 mz?

Am == %

(19.213)
This formula gives the reduction in the critical size for disk
collapse as a function of the applied compression. We next
need the number of vacancy platelets formed in the solid
which are affected by this alteration. Figure 19.29 shows a
typical distribution of cluster sizes due to a single fast-
neutron collision with a lattice atom. This distribution
represents low-temperature irradiation, so the cluster distri-
bution is not perturbed by vacancy or interstitial absorp-
tion from the matrix. Rather, Fig. 19.29 is supposed to
represent the cluster distribution shown as the dashed
histograni in Fig. 17.29(b). Hesketh takes the distribution
to be of the form

K
N(m) =l

where K is a constant and N(m) is the number of depleted
zones (or disks) formed from a single primary knock-on
alom (PKA) which contain between m and m+ dm
vacancies.* The distribution applies to depleted zones for

N{m)

I
|
|
|
|
|
|
I
|
L - m
|

Fig. 19.29 Nascent cluster size distribution in an irradiated
metal.

*The cluster distribution shown in Fig. 19.29 is very
different from that used in the analysis of depleted-zone
annealing in Sec. 18.5. Here, the distribution consisted of
two delta functions, one at m =1 and the other at the m
value corresponding to a zone radius of Rg.
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which 1 <= m < v, where v is the total number of Frenkel
pairs created by a PKA (as calculated by isolated cascade
theory, Sec.17.7). For a typical fast-neutron spectrum,
1~ 500 if annealing of the cascade is neglected. The
constant K in the above distribution is determined by the
requirement that the total number of vacancies contained
in all clusters be equal to v, or

v= J‘,I\ m N(m) dm

The preceding two equations vield K =r/inv, and the

distribution is
v 1
N(m) =~ (ln V) m’*

In an irradiated solid, vacancy platelets are formed with
random orientations. Application of uniaxial stress does not
change the randomness of the formation pattern. However,
the vacancy disks that are perpendicular to the stress axis
exhibit a different critical collapse size from the remaining
platelets. Figure 19.30 shows a block of solid of dimensions
X, vy, and z (perpendicular to the drawing) subject to
compressive stress along the x-axis. Of the vacancy platelets
formed by irradiation, one-third are of the perpendicular
type, which are affected by the stress, and the remainder
are not influenced by the stress.

The number of platelets created in the parallel orienta-
tion which collapse to vacancy loops is represented by the
area under the distribution to the right of i, in Fig. 19.29.
Among the perpendicular-type platelets, all those to the
right of the abscissa m, — Am, are collapsed. The shaded
area in Fig. 19.29, which is equal to N(m,.) Am,, represents
the extra number of disks that are collapsed solely because
the stress affects the perpendicular-type platelets but not
the parallel-type disks. Because of the survival of a greater
proportion of the parallel-type vacancy disks, the block of
solid deforms more rapidly in the directions transverse to
the stress axis than along it. The number of vacancies
contained in the differential area in Fig. 19.29 is m, N(m,)
Am,. The difference between the volume of empty space
added per unit time to each of the two parallel-type disks
(oriented perpendicular to the y and z axes) and that in the
x-direction is

(19.214)

%zs ®(XYZ) 2m, N(m,) Am, = (X2) %

aX _ o1 dZ oo dX
—(Y2) 2= (XY) 7 (¥2)

Or, in terms of the strain rates in the principal directions,

é_v—éx=é,—éx=%Zs<bﬂch(mc)Amc (19.215)
where

. _lax

X dt

. 1 dY

é, == —

’ Y dt

.14z

oz dt

PERPENDICULAR ) X
TYPE

.
~
-~ e PARALLEL
TYPE

a

Fig. 19.30 Vacancy platelets in an irradiated solid.

Because uncollapsed platelets are present in disks of all
orientations in the solid, continual buildup of disk volume
oceurs, and the solid undergoes volumetric swelling as well
as creep (the latter is due to relative deformation in the
three principal directions). The volume swelling rate is given

by
(%V)— 3¢, - 3¢,

The creep strain along the x-axis is the difference between
the total strain rate in this direction and the component of
volumetric swelling, or

¢, — %({/—). =% Y, POm, Nimg) Am,

Using Eq. 19.214 for N(m,) and Eq. 19.213 for Am_, we
find the irradiation creep induced by the compressive stress
to be

. 8 1/ v ; .
(gx ’(‘r('(‘h‘ =[ -3TT-‘/2 ET(]n ’,) (Inc) # ‘52‘\"5} o

= Cad

{19.21¢)

(E\' )(‘l’(‘(‘l)

(19.217)

Comparison of Eq. 19.217 with the second term on the
right side of Eq. 19.176 shows that the coefficient C can he
identified with the bracketed term in the above formula.
Determining a numerical value from the parameters

E=21x 10® kN/m?

Q=124°

z,=02cm"
v =500

m, = 200

we find C to be 20 X 10°° ¢m? kN™' m™. Experimental
values of this coefficient obtained from in-pile creep tests
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on steel are shown in Fig. 19.31. There is quite good
agreement between the magnitude of the theoretical and
observed creep-rate coefficients. However, the theory does
not predict the pronounced decrease in C with temperature
(this behavior is also contrary to thermal creep, which
should increase rapidly with temperature). The absence of a
temperature effect in the theory just presented arises from
the implicit assumption that all the uncollapsed vacancy
platelets formed in the collision cascade are stable indefi-
nitely in the irradiated solid. That is, their number simply
increases linearly with time (or fluence). Had the theory
included destruction of the vacancy platelets by vacancy
emission to the bulk of the solid or by absorption of the
radiation-produced interstitials (which are mobile at the
temperatures for which C has been measured), the number
of surviving disks would have decreased drastically with
increasing temperature. Thus, although the rapid drop of C
with temperature is not explicitly included in Hesketh’s
analysis, this observation is at least consistent with his
model.

The continuous {and linear) increase in the number of
uncollapsed loops with time is responsible for the fact that
the theoretical creep rate is constant (i.e., creep is steady
state). However, as shown in problem 19.18 at the end of
this chapter, lack of a mechanism for removal of vacancy
platelets smaller than the critical size for coliapse leads to
predicted swellings which are far larger than have heen
observed in low-temperature irradiations (although low-
temperature swelling due to accumulation of depleted
zones and their progeny, vacancy disks, has been observed;
see Fig. 16 of Ref. 33).

Contrary to the transient creep mechanism discussed
earlier in this section, steady-state creep by stress-assisted
vacancy disk collapse is irreversible. When the stress is
removed, the extra N(m.) Am. disks that were collapsed
because of the stress do not spontaneously pop back into
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Fig. 19.31 Temperature dependence of the irradiation
creep coefficient C (Ref. 33).

platelets. Thus, the creep strain persists. However, a
difficulty arises if the theory is applied to creep induced by
tension rather than compression. In the former case, N(m_)
Am, represents extra platelets perpendicular to the stress
which have not collapsed because stress aids in their survival
by causing the disk faces to bulge outward. When this stress
is removed, one would expect that platelets larger than the
stress-free critical size would no longer be stable and that
collapse would occur, thereby removing the creep deforma-
tion established during the time that the tensile stress was
applied.

19.7.3 Steady-State Creep Due to
Stress-Oriented Nucleation of
Interstitial Loops

At temperatures roughly bracketed hy the onset of
observable void formation and peak swelling (about 350 to
500°C in stainless steel), irradiation creep can be produced
by preferential nucleation of interstitial loops on suitably
oriented planes by the prevailing stress state. This mecha-
nism was first proposed by Hesketh® 7 and has subsequently
been applied to stainless steel by Lewthwaite,®® Wolfer
et al.,>® and Brailsford and Bullough.*®

During irradiation interstitials nucleate into loops on a
particular set of planes in the solid (e.g., the {111} planes in
the fcc lattice). Loop nuclei formed on planes favorably
oriented with respect to the applied stress have a greater
chance of surviving than those created on planes where the
nucleation process is unaffected by the stress. Although
there are many sets of equivalent {111} planes in the fcc
lattice, for simplicity we consider only the planes perpen-
dicular to the applied stress (called perpendicular type) and
those lying along the stress axis (parallel type). There are
twice as many of the latter as of the former. The situation
can be visualized by regarding the objects in the block
shown in Fig. 19.30 as interstitial dislocation loops and
considering the case of an applied tension rather than
compression (although this is not an important choice).

Because stress favors the nucleation of perpendicular-
type loops, there will be a slightly higher concentration of
these clusters than of either of the two parallel-type loops
on the planes lying along the stress direction. In addition to
preferential loop nucleation on planes perpendicular to the
tensile axis, the growth of the perpendicular-type loops is
somewhat more rapid than that of the parallel-type loops.
However, this effect has been shown to be of secondary
importance®® and will be neglected here.

Preferential nucleation of the perpendicular-type loops
occurs because this orientation allows the applied stress to
do work on the circular dislocation line as it grows. The
snergy of formation is lowered by the amount of external
work communicated to the system in this manner. Consider
generation of a loop from zero size to the critical
nucleation radius R,.. The stress has no bearing on the
formation process for parallel-type loops, and the energy of
the critical-size loop (assuming that the loop can be
regarded as a macroscopic dislocation line with a line
tension 74) is

EH = 27TR|CTd (19218)
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However, a tensile stress ¢ exerts a force ob per unit length
in the outward radial direction of growing perpendicular-
type loops [see Fig. 8.10(b)]. As the loop expands from
radius R, to R, + dR, the change in energy is

dE] = QTTTd dR] - QTTRIUb de
or, upon integrating from R; = 0 to Ry = R},

E, = 27R .7y — TR 0b (19.219)

Assuming that the probability of nucleating a loop in a
particular orientation is proportional to a Boltzmann factor
involving the energy of formation, the relative nucleation
rates of the perpendicular-and parallel-type loops are
related by*

P, _exp (—E,/kT) nR{ab
P — ; =exX
it exp(—E;/kT) kT

) (19.220)

The probabilities of nucleating loops on either of the two
types of orthogonal planes must sum to unity:

P, + 2P” =1 (19.221)

The area per atom on the (111) plane of the fcc
structure is 3% a2/4 and the Burgers vector of the a,/3
(111) faulted dislocation loop is b = a, /3" . Therefore, the
number of interstitials in a dislocation loop of radius R, is
4rRf _nR{a, 7R{b
i = = 19.222
©o3%al 30 Q (19.222)

Where the relation between atomic volume and lattice
constant for the fec structure, Q=a3/’4, has been em-
ployed. Using Eq. 19.222 (with a subscript ¢ attached to m;
and R, to denote the critical-size loop) in Eq. 19.220 and
combining the latter with Eq. 19.221 yields

exp (m;c 082 /kT) 1 ( 2 m,-caQ)
- cai(1+EMic®i) (19 993
LT 37 exp (meottkT) ~ BT (19.223)

3 kT

where Taylor series expansions have been applied to the
exponential terms. If the total density of interstitial loops is
N, (given, for example, by Eq. 19.18), the number density
of perpendicular-type loops is P|N;, which is greater than
the density of loops on either of the two sets of planes
parallel to the stress axis. At some time during irradiation,
the radii of all the loops will have grown from R, to Ry,
but, because the effect of stress on growth subsequent to
nucleation has been neglected, R;; =R, = R;. The loop
radius can be obtained from Eq. 19.16.

The number of interstitial atoms per unit volume
contained in the perpendicular type loops is m;N;P;, where
m; is related to the loop radius by Eq. 19.222. If loop
nucleation had occurred in the absence of stress, the
number of interstitials per unit volume in loops of all
orientations would have been m;N;/3 (i.e., P, = '5). There-
fore, the additional number of interstitials present in the

*The same result is obtained by proceeding through
homogeneous nucleation theory with the formation energy
of a loop reduced by the right term of Eq. 19.219. The
exponential terms in Egs.19.77 and 19.78 would be
increased by the term containing the stress.

perpendicular-type loops as a result of the slightly greater
number of these clusters is

Extra atoms in perpendicular-type loops/cm?

1
= miNl<PJ ; T;)

Following the lines of the argument leading to Eq. 19,198,
the creep strain due to these extra loops in planes
perpendicular to the stress is

56X
Y TE€y = miQNl(PI - %)
Or, using Eqs. 19.223 and 19.222,

micS?.g
kT

€y = g (7R{N;b) (19.224)
If the critical loop nucleus is known (m;, is probably about
3 but can be as large as 10) and experimental information
on loop size and density during irradiation are known,
Eq. 19.224 determines the creep rate. Alternatively, the
fluence dependence of R} and N; can be obtained theoreti-
cally from the point-defect balances, the void and loop
growth laws, and the nucleation rates of these two defect
clusters (Secs. 19.4 and 19.5). This approach is used in
Ref. 40. Consideration of all the equivalent set of {111}
planes in the fcc lattice, rather than simply an orthogonal
set of three, reduces the above creep rate expression by a
constant factor of 2.5 (Ref. 38).

Attempts have been made to connect the creep strain to
the void swelling. This is done by assuming that the number
of interstitials contained in loops is equal to the number of
vacancies in voids. A bit of consideration shows that the
parenthetical term in Eq. 19.224 is equal to the fractional
swelling of the solid due to the loops, and if this volume
increase is equal to that due to the voids (AV/V), we have

e 2 (A_V) m; 20

Col\v ) Tk

KT (19.225)

There is no theoretical justification for the assighment of
equal numbers of interstitials in loops and vacancies in
voids. Excess interstitials can be absorbed by the network
dislocations in the solid provided that the latter are free to
climb. Interstitial loops disappear from the microstructure
above about 500°C (Fig. 19.7), but the voids persist to
above 600°C. Consequently, Eq.19.224 is preferred to
Eq. 19.225 if information on the fluence and temperature
dependence of loop size and density is available. However,
Eq. 19.225 can be modified by multiplication by the
fraction of the total dislocation density contained in loops
(i.e., one minus Eq. 19.15) and in this way be rendered a
reasonably accurate predictor of the creep rate even when
the loops and voids do not contain equal numbers of point
defects.*®

The model of irradiation creep just described is unique
in that the stress affects only the nucleation process. Thus,
if the specimen is unloaded after loop nucleation has
occurred (and perturbed by the stress), the creep persists
during stress-free growth. Conversely, application of the
stress after nucleation has been completed should not
produce this sort of irradiation creep.
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19.7.4 Climb-Controlled Dislocation Glide

The effect of irradiation on creep controlled by
diffusion of point defects to sinks in the solid was discussed
in Sec. 16.10 in connection with the fuel. It was shown that
radiation-produced point defects do not accelerate the
normal creep rate when the sinks are grain boundaries. The
same conclusion is reached when the sinks are dislocations
and creep is entirely due to climb of the dislocations.
However, the class of creep mechanisms constructed by
Weertman (Refs. 24 and 25 in Chap. 16) are susceptible to
enhancement by irradiation. It will be recalled from
Sec. 16.8 that this type of creep involves climb of mobile
dislocations either over obstacles in the glide plane or
toward a dislocation of opposite sign in an adjacent parallel
slip plane. Creep occurs in the first type when the mobile
dislocation reaches the top of the barrier and quickly glides
to the next obstacle, and, in the second type, when the
pileup expands by glide to replenish one of its members
that has been annihilated by an opposing dislocation from
the adjacent slip plane. The separation of the rate control-
ling process (climb) from the strain controlling step (glide)
in these mechanisms is essential to the existence of an
irradiation effect on the creep rate.

The effect of irradiation on diffusional creep processes
(which include the climb-controlled glide variant) has long
been the subject of dispute (see Refs. 38 to 43 in
Chap. 16). On the basis of recent investigations (Refs. 21,
39, and 41 to 44), irradiation enhancement of Weertman-
type creep requires an imbalance in the rates at which
dislocations absorb interstitials and vacancies produced by
fast-neutron bombardment of the metal. In the sections on
void swelling in this chapter, we showed that absorption of
excess interstitials by the intrinsically biased dislocations
can occur only if another sink that consumes excess
vacancies is also present. At high temperatures the vacancy
sinks fulfilling this role are undoubtedly the voids, but at
low temperatures depleted zones can perform the same
function.

{rradiation creep by the climb-controlled glide mecha-
nism is due to the climb velocity (v ), with which the
dislocation is endowed by virtue of capturing excess
interstitials. For irradiation creep to be of significance,
(Ve)ire must be at least comparable to the climb velocity
(Ve)in induced in the blocked mobile dislocation by the
stress arising from interaction with obstacles (Sec. 16.8).
Irradiation simultaneously serves to reduce the creep rate
because the obstacles that the mobile dislocation must
climb over and glide between are either the voids and
interstitial loops in the temperature range where swelling
occurs or the depleted zones at low temperatures. The size
and density of these clusters increase with fluence. These
obstacles are responsible for the increased strength of
jrradiated metals (Secs. 18.5 to 18.7). They are also the
cause of decreased creep rates in postirradiation tests,
which should not be confused with in-pile irradiation creep.
The former is a structural effect since the creep mechanisms
are the same as in an irradiated metal, and only the nature
and density of the obstacles to dislocation motion are
affected by irradiation. In-pile, or irradiation, creep, which
contains the additional element of enhanced climb by

absorption of point defects, is sometimes called dynamic
creep to emphasize the importance of the neutron flux as
well as the neutron fluence.

Creep due to climb-controlled glide of mobile disloca-
tions in an irradiated solid can be analyzed by starting from
the general formula relating strain rate and dislocation
velocity (Eq. 8.21):

é=ppbvg (19.226)

where p,, is the density of mobile dislocations in the solid,
which is generally less than the total dislocation density pg4.
Part of p3 may consist of unfaulted interstitial loops that
are sessile (i.e., not mobile), or are pinned by voids or
enmeshed in dislocation tangles. The b is the Burgers vector
of the mobile dislocation; and vy is the average velocity of
the moving dislocation, which is the ratio of the average
distance that a mobile dislocation glides between obstacles
and the time required for it to climb over the ohstacle:

]
(hjve)

Here, 1 is the glide distance, h is the distance perpendicular
to the glide plane which the mobile dislocation must climb
in order to surmount the obstacle, and v, is the climb
velocity; hjv, is the average time required for the disloca-
tion to overcome the barrier by climb.

We imagine the obstacles to be arranged on the glide
plane in a square array with the spacing given by Eq. 18.25:

__ 1
(2RN)%

Vg (19.227)

1

(19.228)

where R and N are the radius and density, respectively, of
the obstacles, which may be depleted zones, voids, or
interstitial loops. The applied stress is assumed to be less
than that at which the dislocation can pass through the
array by cutling through the obstacles or by bowing around
them and pinching off. In the present case the dislocation
line must climb to a eritical height perpendicular to the slip
plane at which point the applied stress is sufficient to
permit slip to continue. A two-dimensional view of the
process is shown in Fig. 19.32. Rows of obstaclesare viewed
end-on. The separation of the spherical obstacles in the
direction perpendicular to the drawing is the same as the
distance hetween rows in the glide plane, namely 1. If the
obstacles in the real solid were arranged in the perfect
square pattern used in the analysis, climb of a blocked
dislocation over one row would be sufficient for the
dislocation to slip past all the subsequent rows. However,
this deficiency of the idealized model should not be taken
too seriously since in an actual irradiated solid the random
arrangement of obstacles ensures that a mobile dislocation
will be stopped by obstacles after gliding from its previous
pinning position a distance given, on the average, by
Eq. 19.228.

Determination of the creep rate is reduced to calcu-
lating the obstacle height h and the climb velocity v,.

We first consider the situation proposed by Harkness
etal.*® in which the obstacles to be overcome by climb are
voids. Inasmuch as voids attract dislocation lines
(Sec. 18.6), the first dislocation approaching the row of
voids is trapped by them, in a sequence of events similar to
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Fig. 19.32 Dislocation motion over irradiation-produced obstacles in the climb-controlled dislocation glide

model of irradiation creep.

that shown in Fig. 18.22(bh) except for the final pinching
off (which does not occur here hecause the stress is less
than the yield stress for this process). Succeeding mobile
dislocations, however, are repelled by the first dislocation
that has been sucked into the void row. They must climb
over the trapped dislocation to continue on their way.

In the absence of irradiation, the climb process is
identical to that analyzed in Sec. 16.7 (climb-to-escape
model). The probability per unit time that a dislocation
climbs over the pinned dislocation is given by Eq. 16.73,
which can be used to define an average thermal climb
velocity by

- 1 =(vc)th
P Cre h

(19.229)

where the barrier height h is given by Eq. 8.35 in which, to
account for a dislocation pileup behind the trapped
dislocation, oy is multiplied by the intensification factor n
of Eq. 8.39:

K _ Gb
87(1 —v)no

= (19.230)
inoy,

In Eq. 19.229 C is a coefficient that arises from averaging
the climb process over all impact parameters separating the
slip planes of the trapped dislocation and the impinging
mobile dislocation (Eq. 16.72), and 7. is a characteristic
time for dislocation climb. When the climb velocity is based
on the jog density of the line (i.e., Eq. 16.55), 7, is given
by Eq. 16.67. If, on the other hand, the entire dislocation
line maintains the equilibrium vacancy concentration
appropriate to the stress acting on it, the climb velocity is
given by Eq. 16.58, and 7, becomes

K‘[ln(ﬂ ry ] kTb

19.:
2 Dyoi§2n“og, (19.231)

Substituting Egs. 19.230 and 19.231 into Eq. 19.229 and
using Eq. 8.39 for n yields
m*(1—») Dygblol,

(Vo = 5@*15 (Rirg) kTG (19.232)

where the length of the pileup in Eq. 8.39 has been taken as
the spacing between obstacle rows.

Under neutron irradiation the velocity of dislocation
climb is no longer governed by the thermal processes

inherent in the value given by Eq. 19.232. Instead, it is
determined by the flow of interstitials and vacancies to the
distocations. Let J;i and JS be the fluxes of interstitials and
vacancies, respectively, to a unit length of dislocation line
(Eq. 13.89). The net rate at which interstitials arrive at the
line is J¢ — JC, and, since each interstitial contributes a
volume §2, the rate at which the half-sheet of atoms
comprising the edge dislocation gains volume is (Jfl —JHaQ
em?® sec ' em’' of line. In At sec, each unit length of line
gains a volume of (J& —J4Q At, which is equal to the
product of the width of the half-sheet of atoms, b, and the
distance climbed in At, which is (v.);,, At. Thus, the climb
velocity due to the net flow of irradiation-produced
interstitials to the line is

(J8 —JH8

b

Equation 19.233 demonstrates that the climb of
dislocations caused by irradiation is due to precisely the
same phenomenon that is responsible for void growth,
namely, the bias of dislocation lines for interstitials.

The irradiation creep rate is obtained by combining
Egs. 19.226 and 19.227 and using Eq. 19.230 for h and
Eqg. 19.233 for v, which yields

(Vedirr = ~ (I8 =J4 T (19.233)

. 8m(1 —r)no
s = oot L0 g8 — 7 (19.284)
Now we note that the product of (J& —J9) and the total
dislocation density of the solid, pq, is the difference in the
volumetric sink strengths of the dislocations for interstitials

and vacancies, or
pa(d¢ —Jd) = Q¢ — Q¢ (19.235)

where Qf and QY are given by Egs. 19.101 and 19.102, in
which the notation N (representing the network disloca-
tions) is replaced by d (representing all dislocations). For
the present analysis the distinction between dislocation
lines and dislocation loops is neglected. The irradiation
creep rate can be related to void swelling by using the
point-defect balances given by Eqs. 19.134 and 19.135. As
before, we combine network dislocations and interstitial
loops into the total dislocation density. Subtraction of one
of the point-defect balances from the other shows that

Qf - Qd = Quoid — Qyeud (19.236)



512 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

which states that, in the absence of sinks other than voids
and dislocations, the net flow of interstitials to dislocations
is just equal to the net flow of vacancies to voids. Finally,
the swelling rate is given by

AV AV voi voi
i (7)- (V)@ —arme

Combining the preceding four equations and expressing the
number of dislocations in the pileup by Eq. 8.39 yields the
irradiation creep rate according to this model:

P TN LA St ﬂ(ﬁ’)az
irr 0d GZ Q v XV

which shows the direct connection between the swelling
rate and the irradiation creep rate.

The creep rate under irradiation is less stress dependent
than is the thermal creep rate. If Eq. 19.232 had been used
in place of Eq. 19.233 in the foregoing derivation, the stress
exponent would have been 4 instead of 2. If the mobile
dislocation density is low or if the swelling rate is large, the
mobile dislocations can climb over the dislocations trapped
by the voids so quickly that pileups do not have time to
develop. In this case we set n =1 wherever it appears, with
the result that the irradiation and thermal creep rates are
proportional to 0, and aiy, respectively. In any case the
exponent of the stress is lower in irradiation creep than in
thermal creep, and this prediction is confirmed by experi-
ment.

The irradiation creep rate has a somewhat narrower
temperature range than does the swelling rate. When the
temperature is low, a substantial part of the total disloca-
tion density is present as faulted loops, which cannot glide;
SO Um'Pq is low. In addition, (AV/V) is small at low
temperatures, and the irradiation creep rate is reduced by
both these factors. At the high-temperature extreme,
irradiation creep by this mechanism ceases when the voids
do not grow (i.e., when AV/V ~» 0 at T ~ 600°C in stainless
steel). At sufficiently high temperature, the rapidly increas-
ing thermal climb velocity given by Eq. 19.232 overtakes
the irradiation-induced climb velocity, and normal
Weertman thermal creep supplants irradiation creep as the
principal deformation mechanism. Similarly, the Uiy
dependence of the thermal climb velocity implies that, at
any temperature, thermal creep dominates irradiation creep
if the applied stress is sufficiently high (but not high
enough for the dislocations to cul through or bypass the
voids by bowing and pinching off).

Equation 19.238 implies that the irradiation creep rate
decreases with increasing fluence because the size and
perhaps the density of voids increases during irradiation.
According to Eq. 19.228, the obstacle separation is de-
creased accordingly.

The most difficult term in Eq. 19.238 to predict is the
fraction of the total dislocation population which is mobile.
Harkness et al.*? identify the mobile dislocations with the
line length of unfaulted loops in the microstructure. They
assume that Frank loops unfault when R =500 A and
consider that when the average loop radius exceeds this
value, p,,/pq = 1. When the average loop size is less than
500 A, they employ the approximation

(19.237)

(19.238)

Pm_ Ry(A)
pg 500

where R, is a function of fluence as determined by solution
of the loop-growth law, which is obtained in the course of
solving the void swelling (by the method shown in
Fig. 19.23).

In addition to the voids, interstitial loops provide
barriers to dislocation motion of strength comparable to
that of the voids. Wolfer etal*” have formulated the
climb-controlled glide model described above with loops
instead of voids as obstacles. The loops directly repel
mobile dislocations that approach them. The applied stress
necessary to force a dislocation line past a row of loops of
radius R separated by a distance | is given by combining
Egs. 18.54 and 18.58:

__aGb  R{

Ty T o1 — o) Iy?

where y is the distance between the row of loops and the
glide plane of the mobile dislocation. If the row of loops
lies in the glide plane of the approaching dislocation and if
the applied stress is too low for the line to penetrate the
row (i.e., if 0., < o4 of Eq. 18.61), the line has to climb by
a height y in order to continue slip. Therefore, y can be
written as the barrier height h. If we allow for dislocation
pileup behind the row of loops by replacing g,, by no,,
the above formula can be solved for the barrier height in
terms of the applied stress:

[& R} r

31 — 1) nlo;; (19.239)

If the previous derivation is repeated using Eq.19.239
instead of Eq. 19.230 for h, the irradiation creep rate is
found to be

. oo \2m(1 = »]* 12 <;w)
S L (2% . (192
Cirr <pd)[ aG? Ryp\ v ) Oxv (19:240)

which, when compared with Eq. 19.238 for void obstacles,
shows a lower stress dependence (linear instead of squared)
and a greater penalty due to fluence because of the factor
R, in the denominator.

As a final example of climb-controlled glide models of
irradiation creep, Duffin and Nichols** have advanced a
mechanism in which the obstacles are depleted zones. In
this model the swelling rate does not appear because
depleted zones and voids do not coexist in an irradiated
metal.

19.8 NOMENCLATURE

a, = lattice constant
o/ = area swept out by bowing of pinned dislocation
segment
A,B,C = constants in creep formula, Eq. 19.176
b = length of Burgers vector
B = binding energy of a diinterstitial
C = point-defect concentration (particles per unit
volume); constant given by the right side of Eq.
16.72
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C* = point-defect concentration at the surface of a
coherent precipitate
D = point-defect diffusion coefficient
D, = volume self-diffusion coefficient
= energy of a loop
void = energy of a void
f(R,.#.1) = function defined by Eq. 19.157
F = force on a dislocation
F(1/4) = function defined by Eq. 19.199
F(n) = function defined by Eq. 19.142
g = gibbs free energy of a cluster
+ = shear modulus; total Gibbs free energy
h = climb height for a dislocation to overcome a
harrier; enthalpy of a cluster
h(m) = function defined by Eq. 19.43
H = coefficient of M in Eq. 19.56
[ = nucleation current or void current
} = gas atoms in a cluster
J = flux of point defects to a cluster
J9 - flux of point defects to a unit length of
dislocation
k = Boltzmann’s constant; rate constant
k;, = vacancy—interstitial recombination rate constant
K = coefficient of m' in Eq. 19.6; given by Eq.
8.30
1 = distance between dislocation pinning points
¢ = length of a bowed dislocation segment
m = vacancies per void or per vacancy loop; intersti-
tials per interstitial loop
M = total helium concentration in metal
M; = density of helium atom clusters containing j
helium atoms
n = number of dislocations in a pileup: number of
point defects in a region of solid
N = total number of voids per unit volume
void distribution function
N, = number of faulted dislocation loops per unit
volume
number of precipitate particles per unit volume
N, = number of lattice sites per unit volume
p = helium pressure

it

Eloop

H

=z
z
i

Z
I

P = probability of nucleating a loop of a particular
~ orientation
Qj. = rate of absorption of a point defect of type k by
all the defect clusters of type j in a unit volume
of solid
rq = radius of a dislocation core
R = rate of reaction; radius of a void
'R =void growth rate
R. = negative of void-shrinkage rate due to vacancy
) emission
R, = void-growth rate in the absence of recombination
and thermal emission of vacancies
= size of defect clusters created by collision cas-
cade
R, = radius of a faulted dislocation loop
A = radial extent of the stress field around a disloca-
tion; radius of curvature of a bowed dislocation
line
s = entropy of a cluster; distance hetween opposite
faces of a vacancy platelet

R

S = supersaturation of point defect
t = time
T = temperature, "K
V. = climb velocity of a dislocation
vq = glide velocity of a dislocation
V = volume
AV = volume increase
w = jump frequency
W = combinatorial number
x = defined by Eq. 19.146
X,Y,Z = dimensions of a crystal
Y = defined by Eqgs. 19.129 and 19.130
z = combinatorial number
Z = combinatorial number for dislocations, Egs.
19.99 and 19.100

Greek Letters

a = point-defect emission rate from a cluster
g = point-defect arrival rate at a cluster
¢ = creep strain; energy of formation
¢ = creep rate
¢4 = heat of solution of hetium in metal
€* = energy of migration of a point defect
n = dimensionless parameter, Eq. 19.143a
¥ = surface tension
Yst = stacking-fault energy
v* = defined by Eq. 19.122
1« = chemical potential
v = vibration frequency; point defects produced per
PKA
2 = atomic value
¢ = total fast-neutron flux
Pq = total dislocation density
Py = dislocation density as faulted loops
P = density of mobile dislocations
pn = dislocation density due to perfect loops and the
network dislocations
o = hydrostatic stress (positive in tension)
0yy = shear stress

Y, = macroscopic neutron-scattering cross section
7 = time
74 = line tension of a dislocation
0 = fraction of sites on trapping interface occupied
by point defects; T—623, "K
£ = defined by Eq. 19.34

Subscripts and Superscripls

¢ = in critical embryo or critical-size vacancy platelet
eq = equilibrium
f = forward reaction
honio = homogeneous nucleation
i = interstitial
irr = due to irradiation
m = containing m point defects
nucl = nucleation
p = precipitate particles
r = reverse reaction
th = due to thermal process
v = vacancy
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1 = edge dislocation with extra half-sheet of atoms
perpendicular to applied stress; loop perpendicu-
lar to stress

|| = edge dislocation with extra half-sheet of atoms
parallel to the applied stress; loop parallel to the
stress
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19.10 PROBLEMS

19.1 Using Fig. 19.4, estimate the fraction of the va-
cancies created in an irradiation of fluence & x 10°°?
neutrons/em? which is in voids.

19.2 Prove that Eq. 19.44 is the solution to Eq. 19.43 by
using the fact that the logarithm of a product of terms is
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the sum of the logarithms of each term and by carefully
examining the behavior of h(m) and N°“(m) as m - 0.

19.3 Determine the critical cluster size and the nucleation
rate in classical nucleation theory (i.e., when §3;/8, = 0).

19.4 Derive the void distribution function N(m) for the
nonequilibrium case with steady-state nucleation.

19.5 At the beginning of irradiation of stainless steel at
5007C with a flux of 10'* neutrons em™? sec™, use the
point-defect balances to compute:
(a) The vacancy and interstitial supersaturations 5, and

Si-

(b) The arrival-rate ratios (8, /8;)qis; and (8i/8v)void -

(¢) The void and loop nucleation rates. For void
nucleation, make a rough estimate from Fig. 19.10.

Take point-defect migration and formation energies from
problem 19.11. Use a dislocation density of 10° ¢m™. The
steel contains no precipitates and is unstressed. Assume that
the combinatorial number for vacancy interstitial recombi-
nation is 100. For dislocations, assume Z,/Z, = 1.02.

(d) How are the results of (b} and (¢) changed when the
steel contains 4 X 10'? incoherent precipitate particles/
c¢m? of radius equal to 100 A?

19.6 Apply homogeneous nucleation theory (as developed
in Sec. 13.8 for fission gases in the fuel) to predict the
nucleation time (or fluence) for helium bubbles in the
cladding. The nucleation time is defined as the time at
which the concentration of di-atoms passes through a
maximum. Use the simplified method described in
Sec. 13.8 (i.e., invoking Eq. 13.137). The fast-neutron flux
is monoenergetic (E, = 0.5 MeV) and is equal to 10'°
neutrons/cm ’ sec'. Assume a re-solution parameter of
107 sec’! (problem 17.14) and make reasonable estimates
of the other parameters needed in the calculation. Assume
that the diffusion coefficient of helium in stainless steel is
~107'% em?/sec. Compare the fluence ®t. for helium-
bubble nucleation with the observed incubation fluence of
~10%? neutrons/cm? needed for void formation in stainless
steel.

19.7 Incorporate re-solution into the theory of loop
nucleation by chemical-reaction-rate theory. Use the micro-
scopic picture of re-solution, in which the probability per
second of any atom in an interstitial loop being redissolved
by radiation is b. Include re-solution as a term of the form
nbN,, in the balance on clusters of n interstitials. Assume
that the combinatorial numbers z,; and z,, are equal to
10n.

19.8 We wish to determine the equilibrium vacaney
concentration C, in a solid in which a void of radius R and
internal gas pressure p is embedded. The system (solid plus
void) is subject to hydrostatic (compressive) stress o. To
determine C,, we use the technique applied to obtain the
equilibrium vacancy concentration at a dislocation loop
(Sec. 19.5). The Gibbs free energy of a system containing

the void and the solid with vacancy concentration C, and
interstitial concentration C; (C,C; = Cy?C{4) is given by

G = GO + g(n]v) gy N

where G, is the free energy of the stress-free solid without
the void; g(m,) is the reversible work required to create a
void containing m, vacancies against the external pressure
(stress) o with constant internal gas pressure p in the cavity;
n, and n; are the number of vacancies and of interstitials,
respectively, in the matrix of the block; and u, and y; are
the chemical potentials of the point defects when the solid
is under stress.

The value of u, is equal to kT In (Cy/CS?) where CE9 is
the equilibrium vacancy concentration in the stressed solid:

€5 = (C5%)y exp(— ;r)

where (Cy9), is the equilibrium vacancy concentration in
the stress-free solid, and v is the volume change that occurs
when one atom is moved from the interior of the matrix to
the surface. In the text, v has been identified with the
atomic volume {2, but this neglects the contraction of the
lattice around the vacant lattice site. If the volume
contraction around the vacant lattice site is ¢, then v is
2 — Y.

Determine C,, the vacancy concentration for which the
system described above is in thermodynamic equilibrium.
In nonequilibrium situations (such as stress-induced void
growth), this concentration is assumed to apply at the
surface of the void.

19.9 Removal of point defects by grain boundaries in the
solid adds a term (assuming CS9 is small)

Q=Y = k2,D,C, (1)

to the vacancy balance of Eq. 19.134 and a similar term to
the interstitial balance. The value of kgb is computed by
the following method. The solid far from the grain
boundary is assumed to be a homogeneous medium wherein
the vacancy-balance equation, Eq. 19.136, applies. For
simplicity, recombination is taken into account by defining
an effective vacancy-production rate:

G‘ = st(l) - kivCiCV (2)

Terms involving Cy9 are neglected, and Eq. 19.136 is
written as

i =k’D,C, (3)
where
k? = Z,pq + 47RN + 47R,N,, (4)

Because the grain boundary acts to maintain the
equilibrium point-defect concentrations (C;® ~ 0 in this
calculation), Eq. 3 is not valid close to the grain boundary.
Here, the vacancy balance must contain a term representing
diffusion of vacancies toward the grain boundary.

(a) Assuming that the concentration drop occurs very
close to the grain boundary, the vacancy-diffusion equation
in this region can be written for a semiinfinite medium in
Cartesian coordinates. By solving this diffusion equation,
determine the vacancy concentration profile in the vicinity
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of the grain boundary and the vacancy flux to the grain
boundary.

(b) Now consider the grain as a sphere of diameter d.
Compute the total rate of removal of vacancies by the grain
boundary from the flux computed in (a). From this resuit,
determine Q8° and hence k;y,.

19.10 Calculate and plot the relative void-growth rate
R/R, for molybdenum (melting point T, = 2900°K) as a
function of T/T,,. Use the following parameters:

¢, = 190 kd/mole

¢y =190 kd/mole

g = 10" em?

Y. =03em’!

d = 10" neutrons em? see’!

r=100
Ziv = 30

Z; = 1.02
Z,=1.0

Neglect voids as sinks (N -~ 0) and precipitates (N, = 0) and
loops as sinks {p; =0). Assume the vacancy diffusion
coefficient (in ¢cm?/sec) is given by D, = 10" a2 exp (—¢¥/
kT). Assume that the voids are 300 A in radius.

Compare the plot for molybdenum with Fig. 19.18 for
stainless steel, taking the melting point of steel as 1750"K.

Would replacement of stainless steel by molybdenum
avoid void swelling at the peak cladding temperature of
650°C?

19.11 Show that the recombination properties of coherent
precipitates are virtually nil when this type of sink is
introduced into a solid containing equilibrium concentra-
tions of vacancies and interstitials (i.e., C;? and C{?). The
migration and formation energies of interstitials and va-
cancies can be taken as

e =13 kd/mole

€; = 420 kd/mole
€¥ =125 kd/mole
€, = 160 kd/mole

The temperature is 500°C.

19.12 Because of image dislocations in the voids,
Eqs. 19.95 and 19.96 are multiplied by W, and W;,
respectively. What is the growth law in the absence of
recombination and thermal emission (i.e., the analog of
Eq. 19.140)? Neglect the terms representing absorption by
coherent precipitates.

19.13 (a) In problem 18.1a, replace the condition that the
vacancy concentration is maintained at a value C{9 in the
bulk solid by the condition that the only sinks for vacancies
in the solid are the dislocations; the dislocation density is
pq and the void concentration is N. Determine the void
radius as a function of time if the initial radius of all voids
was R.

(b) Repeat problem 18.1a as stated but with the proviso
that each void initially contains j helium atoms.

19.14 (a) Derive a growth law for interstitial loops (analo-
gous to Eq. 19.138 for voids).

(b) Derive the analog of Eq. 19.140 for loops. Assume
N, =0

(¢) Convert the loop-growth law Lo the time rate of
change of the dislocation density of the solid.

(d) Define a dimensionless void size by Eq. 19.146 in
which the dislocation density is replaced by pg, the value
at the start of the growth period (t,). By choosing
appropriate dimensionless dislocation density and time,
convert Eq.19.140 to a lotally dimensionless equation.
Integrate this equation with the initial condition
R{ty) = R.. The void and dislocation loop densities, N and
Nj, can be assumed constant. For this integration, assume
that the dislocation density remains constant at its initial
value. Take Z; = Z, except where the difference in these
two quantities appears.

(e) Convert the result of part ¢ Lo the same dimension-
less quantities used in part d. Numerically integrate the
dimensionless void- and loop- (or dislocation density)
growth laws starting with the initial conditions:

R. =104
and the cluster densities:

N =10"? voids/em?
N, = 10'% loops/em?
Bau = 107 em™

Choose the initial loop radius (R)) such that the number of
vacancies in the void nuclei at t, is equal to the number of
interstitials in the embryo loops.

(f) The incubation period corresponds to a fast-neutron
fluence of 10?? neutrons/em?®. Plot the results of the
integrations in parts d and e. Compute the swelling at a
fluence of 5x 10%? neutrons/cm?. This solution is appli-
cable near the peak swelling temperature where recombina-
tion has become insignificant and the shrinkage term has
not yet become important.

19.15 At some time t, during irradiation, nucleation of
voids occurs. For t - t,, growth of the voids continues.
Assume the growth is diffusion-limited and that the
concentrations of vacancies and interstitials at the void
surface are zero.

Neglect the changing sink concentrations due to void
and loop growth for t > t,, and assume that the concentra-
tions of vacancies and interstitials in the matrix are
constant in time.

Calculate the swelling at some time t > ty, neglecting
swelling at tq, for the following two void distributions at
t().

(a) At t, all voids are of the same size, Ry. The total
void density is N.

(b) At ty, the voids are distributed in size according to
the function Ny(R,).

(c) Show that the result of part b reduces to that of
part a when the initial void distribution is described by a
delta function.

19.16 Consider a segment of a circle of radius .# which
has an are length % and a chord distance of 1.

(2) Prove that d Z/d .s/= 1/4, where 4 is the area of
the segment.
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(b) Derive the equation for des//d(1/.4).
(¢) Repeat part a when the ends of the chord are the
centers of smaller circles of radius R.

19.17 Solve Egs. 19.191 to 19.193 using the approxima-
tions of Egs. 19.194 to 19.196.

19.18 In the Hesketh model of irradiation creep by
stress-enhanced vacancy-loop collapse, depleted zones with
less than m, ~ 200 vacancies remain in the solid as vacancy
platelets. For m < m,, the volume per platelet of size m is
m§2. Using the inverse-square distribution function for
vacancy platelet (or depleted zone) sizes produced by a
neutron collision, compute the swelling due to uncollapsed

platelets in the absence of applied stress at a fast fluence of
102° neutrons/em®. Assume X =0.2 em', Q=12 A3,
and v = 500 Frenkel pairs per fast-neutron collision.

19.19 The Lagrangian formulation of the void continuity
equation is to be applied to a case of simultaneous growth
and nucleation of voids in an irradiated metal. It is assumed
that the vacancy and interstitial constants and the void
nucleation rate are time-independent.

(a) What is the void distribution function N(R,t) for
this model?

(b) What is the swelling as a function of time for
specified values of C,, C;, and I, ,¢1?





