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6.1 Tensor product of Hilbert spaces 

Until now we have been concerned with the description and evolution of a single TLS. Although we have seen some 
examples of how it describes some real physical systems, of course many systems are more complicated and cannot 
be described by that formalism. We could of course start studying higher dimensional systems, such as more general 
angular momentum with dimension N . Here we focus instead on systems with dimension N = 2n (with n integer) 
because we are interested in studying composite (or multipartite) systems, where two or more TLS systems interact. 
Let’s consider 2 two-level Hilbert spaces HA and HB , each spanned by the vectors: |0)A, |1)A and |0)B , |1)B . For each 
space we can define the Pauli Matrices and the identity on the space. They are two distinguishable Hilbert space 
(we will deal with indistinguishable particles later on). The action of a Pauli matrix on the vector of its own Hilbert 
space is as usual (e.g. σA |0) = |1) ). But operators of the A Hilbert space do not act on the vectors of the other x A A

Hilbert space, they leave them unchanged: σA |0) = |0)B .x B 
We can define the joint space HAB by a tensor product HAB = HA⊗HB , which has dimensions N = 22×22 = 24 = 16. 
When we consider a matrix representation of the Hilbert space, this corresponds to a kronecker product. For example, 
the kronecker product of two matrices (operators) A and B is given by: 

 
A11B11 A11B12 A12B11 A22B11 


 
A11B A12B 

 
A11B21 A11B22 A12B21 . . . 

A ⊗B = = 
	 

A21B A22B
	 A21B11 A21B12 . . . . . .  

A21B12 

that is, a 4 × 4 matrix. In the same way, the vector states of the joint Hilbert space are defined by the kronecker 
products of the basis states of the two spaces. For example: 

 
0 


� 
0 
� � 

1 
� 

0⊗ |1)B = ⊗ =|0)A 1 0 
 1 

 

0 

A basis set for a two-qubit system (two TLS) is given by the four states: |00), |01), |10), |11). 
Notation-wise, we normally do not write the identity: σA ⊗ 1B = σA .x x 
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If one spin space is spanned by 4 matrices, the joint domain A and B is spanned by 16 operators, which are the 
combinations of operators from the two spaces: {1, σA , σB , . . . , σAx σB , . . . σAσB 

x x y z z }.
The joint space is still an Hilbert space. If |a) is a vector in the HA space and |b) in the HB space, taking a vector 
in the joint space |a) ⊗ |b) it has the properties of a linear vector: 

(|a1)+ |a2))⊗ |b) = |a1) ⊗ |b)+ |a2) ⊗ |b) 

and 
c(|a) ⊗ |b)) = c |a) ⊗ |b) = |a) ⊗ c |b) 

(notice that the scalar can be pushed trough as desired).
 
If A is an operator in HA and B in B , each operator acts on its own domain: AB( a b ) = (A a ) (B b ). If
 
HC = HAB is thejjoint Hilbert spac

H
e, any operator in it can be written as a linear c
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two spaces: C = i,j ci,j AiBj , where i and j run on the two domains and {Ai}, {Bj } form complete sets (a basis
 

for the operator spaces).
 
The inner product of vectors in the joint space are
 

(�b1| ⊗ �a1|)(|a2) ⊗ |a2)) = �a1| a2) �b1| b2). 

A ket of a joint space can also be written as a, b , that is, a ket can be specified by as many quantum number as 
required to fully characterize the state. 

| )

6.1.1 Product Operator Basis 

We can generalize these considerations to more than two TLS (or qubits or spin- 1 ). We thus define a composite2
Hilbert space of d®imension N = 2n, where n is the number of qubits, as the tensor product of the Hilbert space for 

H n 
each qubit: = i=1 Hi. A basis for this operator space is the product operator basis (also called generalized Pauli
operators). Elements of this basis are defined as 

n
(j)

Pl = 
n 

Pl ,
j=1 

 (j) where each Pl is either a Pauli matrix σx, σy, σz or the identity 11 in the space of the qubit j. Notice that Pl 
† 
 = Pl

(hermitian) and Tr {PlPl′ } = Nδl,l′ (tha
{
t is, the ba

}
sis is orthogonal, but nor normalized). 

6.2 Quantum Information Processing 

Quantum information processing is the study of information processing tasks that can be accomplished (only) using 
quantum mechanical systems. What do we mean by only? What we refers to are tasks that can be possible only 
if the law of quantum mechanics apply to the system used for processing the information or that are accomplished 
in a more efficient way if performed by a quantum system (in terms of time or material resources). For example, 
Peter Shor showed in 1994 that it is possible to find the prime factors of a number using a quantum computer in an 
exponentially shorter time than in a classical computer. The scaling refers to the fact that if we want to factorize a 
number represented by n bits of information (e.g. in its binary representation the string is n-character long) it will 
take a time Tcl ∝ 2n for a classical computer to perform the computation, while only a time Tqu n to a quantum 
computer. Although factoring the number 15 is easy14, factoring large numbers is a very time-c

∝ 
onsuming task, so 

much that encryption is based on number factoring (as the reverse operation, finding the product of two numbers, is 
instead an easy task). 

14 Why do I mention here 15? Because that is the number that has been possible to factorize until now by a quantum 
computer: 
L.M.K Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood and I.L. Chuang, Experimental realization of Shor’s 

quantum factoring algorithm using nuclear magnetic resonance, Nature 414 883-887 (2001) 
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While it is still a debate of where the power of quantum computation comes from, two main ingredients seems to 
have a preeminent role. Quantum superposition (in the form of parallelism that allows to compute all the possible 
solutions of a problem at once) and interference (that leads to algorithms that select a constructive interference for 
the correct solution, so that we obtain the right answer with high probability once we measure the quantum system 
and collapse the superposition state). As it is implied in this last statement, not all the tasks can be made more 
efficient on a quantum computer and in fact it has proven quite hard to find quantum algorithms (although the 
known ones are quite powerful). 
Quantum information processing has ramifications well beyond quantum computation. Very active areas of research 
- and of practical results - are quantum communications, simulations, sensors, and of course on the theory side, 
quantum control, quantum complexity, entanglement theory, decoherence, etc. 
Here we will adopt some of the language and tools of quantum information to explore ideas that connect to the very 
foundation of quantum theory. We will start by describing operations that can be performed on a quantum computer. 
As at its heart a quantum computer is just a QM physical system, these operations simply describe the evolution of 
the system itself. 
In the same way as classical computer are physical systems, circuits made of wires and gates, a quantum computer 
is also composed of wires and quantum gates. The wires are used to carry the information around, while the gates 
perform operations, manipulate the information. Quantum gates however have the properties of being linear and 
invertible, as they represent the unitary evolution of a quantum system (a collection of TLS or qubits). This is 
different than usual classical gates, although invertible classical gates were already known. 

6.3 Operators on two Qubits 

There are several operators which are normally used in quantum computation and that describe the possible evolution 
of the system. 
- NotA = σx ⊗ 1B ; Not

B = 1A ⊗ σ√ 
x 
B . 

- Hadamard gate: H = (σx + σz )/ 2. 
- Controlled Not: rotate B conditionally on the state in the A subspace. Introducing the idempotents15 (or projectors) 
E+ = |0) 0| and E− = |1) 1|, the CNOT is CANOT B = E+ + E−σx 

A 

A A B : 

CANOT B = 

 

 

1 0 0 0 
0 1 0 0 
0 0 0 1 
0 0 1 0 

 

 

If somebody has taken some computer science classes, you can realize that the truth table of the cnot gate is quite 
similar to that of a XOR gate. We can also just have general single qubit gates, U , that describe any general rotation 

A B AB 
0 0 00 
0 1 01 
1 0 11 
1 1 10 

Table 2: Truth table of the CNOT (1st qubit controller, 2nd qubit target) 

on a single qubit. If we combine this single qubit rotations with the CNOT gates on any pair of qubit, we are able 
to build any possible algorithm (or computation) on the system. That also means that we are able to enforce any 
possible evolution of the system, by letting it evolve under these two types of gates. We says that they are universal 
gates. 

15 Idempotents since they square to themselves 
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A. Measurement in the σx basis 

At the end of a circuit, the qubits are measured. While usually it is implicit that the qubits are measured in their 
computational basis (|0), |1)), which corresponds to the eigenvalues of the operator σz, this does not always has to 
been the case. The eigenvectors of σx form an equivalently good basis. We could have expressed a state vector as: 
|ψ) = a |0)+ b |1) → |ψ) = c |0) + d |1) = c |+)+ d |−) (the last expression is a notation encountered often). The z x x x 
coefficients c and d can be calculated with a change of basis. First, notice that the eigenvectors of σx in the z-basis 
are given by the eigenvectors of the matrix 

0 1 
σx = ,

1 0 

that is: √ √ 
|+) = (|0)+ |1))/ 2 |−) = (|0) − |1))/ 2 

The operator that perform the change of frame is therefore the Hadamard matrix: |ψ) = H |ψ) . This is also the x z 
reason why, instead of measuring in the x-basis, we can perform an Hadamard operation to bring back the qubit to
 
the z-basis, and measure in this more usual basis.
 
The representations of gates, qubits and wires is usually done via diagrams like the following:
 

|0)A H • U 

|0)B H × 

Fig. 9: Quantum circuit, showing Hadamard, CNot gate and a general gate U 

6.4 No cloning Theorem 

We are going to study some properties of quantum states that distinguish them from classical states. One property 
that has been known for a long time, without stirring much interest before it was considered again in the optics of 
quantum computation is the impossibility of copying a quantum state. This impossibilities seemed to doom quantum 
computation, because it seemed to forbid correction codes, but quantum resources offer other ways to perform error 
correction. 
The so-called No-cloning theorem, states that: 
� Theorem: It is impossible to make a perfect copy of an unknown, pure state by an unitary operation. 

Proof: I want to copy an arbitrary state |ψ) = α |0)+ β |1) on the blank initial state |i) using a unitary operator U . 
The final state is therefore: 

?
U |ψ) ⊗ |i) = |ψ) ⊗ |ψ) 

for any state |ψ) in the domain of the first system. If I assume to be able to copy any arbitrary state, I can assume 
that I can copy at least another state |ϕ), which is not the state |ψ) and not orthogonal to it. For this second state 
we have: 

U |ϕ) ⊗ |i) = |ϕ) ⊗ |ϕ) 
Equating the inner products of the RHS and LHS of the two equations above, we obtain: 

ϕ, i|U †U |ψ, i) = ϕ, ϕ|ψ, ψ) =
 
ϕ |ψ) i |i) = ϕ |ψ) ϕ |ψ)

ϕ |ψ) = ϕ |ψ)2
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� �The last equation is verified iif ϕ |ψ) = 1 or ϕ |ψ) = 0. In the first case, the two states are in effect the same state 
(up to a normalization factor or a global phase, which are not important). In the second case the two states are 
orthogonal, in contradiction with the hypothesis. 
A unitary operator cannot copy an arbitrary state. If we find an operator that can clone one state, it can only copy 
that state and states which are orthogonal to it, but it cannot clone all the other states. In a Hilbert space it is 
therefore possible to define an operator that clones the basis states, but not an arbitrary superposition of them. 

Example of ”Cloning” 

Consider the action of the CNOT gate on the state |ψ) |0), where |ψ) is the state we would like to clone and |0) is 
the blank bit we want to copy on. If |ψ) = |0), the CNOT gives us the state |00), if it is |1) we obtain the state: |11). 
So it seems that it is possible to copy the state of the first qubit on the second qubit. But notice that for the moment 
we have only verified that we can copy two orthogonal state. If we have a more general state: |ψ) = a |0)+ b |1), the 
action of the CNOT will give us: 

CNOT |ψ, 0) = CNOT (a |00)+ b |10)) = a |00)+ b |11)

 |ψ, ψ) (a |0)+ b |1))(a |0)+ b |1)).= = 

Notice that approximate cloning is possible16 (that is, it is possible to obtain an approximate copy of an arbitrary 
state up to an error ǫ. The error is usually measured as the deviation from unity of the inner product of the original 
and ”cloned” state: ǫ = 1− |� ψ|ϕ)|). 

16 Valerio Scarani, Sofyan Iblisdir, Nicolas Gisin and Antonio Acin, Quantum cloning, Rev. Mod. Phys. 77, 1225 - 1256 (2005) 
Abstract - The impossibility of perfectly copying (or cloning) an unknown quantum state is one of the basic rules governing 
the physics of quantum systems. The processes that perform the optimal approximate cloning have been found in many 
cases. These ”quantum cloning machines” are important tools for studying a wide variety of tasks, e.g., state estimation 
and eavesdropping on quantum cryptography. This paper provides a comprehensive review of quantum cloning machines 
both for discrete-dimensional and for continuous-variable quantum systems. In addition, it presents the role of cloning in 
quantum cryptography, the link between optimal cloning and light amplification via stimulated emission, and the experimental 
demonstrations of optimal quantum cloning. 
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6.5 Entanglement and EPR paradox
 

It is nearly 70 years ago that Schrödinger gave the name Verschraenkung to a correlation of quantum nature. This 
term was then rather loosely translated to entanglement. Over the decades the meaning of the word entanglement has 
changed its flavor, going from a negative statement by Einstein and coworkers “An entangled wavefunction does not 
describe the physical reality in a complete way”, to more quantitative definitions (Bell, “A correlation that is stronger 
than any classical correlation”) to more practical ones (C. Bennett: “A resource that enables quantum teleportation”, 
P. Shor: “that allows for faster algorithms”).
 
A simple definition of entanglement is possible for pure, bipartite systems (i.e. composed of two subsystems).
 

D: Entanglement A pure state |ψ) is called separable iff it can be written as |ψ) = |ϕ)1 ⊗ |ϕ)2, otherwise it is
 
entangled. An example for a pure separable state is |00); examples for pure entangled states are the Bell states


√  Φ±) = (|00) ± |11))/ 2

√  Ψ±) = (|01) ± |10))/ 2 

We will see some measure of entanglement and also some difficulties arising for example in defining and measuring
 
entanglement for more complex systems.
 
Why is entanglement a difficult property to quantify and more importantly, to grasp its meaning?
 
We will review the so-called EPR paradox which makes it manifest some of the weirdness of QM as associated to
 
entanglement.
 
In 1935 Einstein published a paper with some coworkers that asked :
 
Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?17 

We will rephrase their result in a slightly different way (due to Bohm) and following the presentation in Ballentine’s 
book18 . 

6.5.1 Bell Inequalities 

√ 
Let us suppose that we are capable of making a state |ψ) = (|01) − |10))/ 2 of two identical spin-1/2 particles, 
with the two particles traveling with equal momenta in opposite directions. For example, they could originate in the 
decay of an unstable particle of zero spin and zero momentum, in which case momentum conservation implies that 
the particles move in opposite directions and have spin with zero sum. 
Two experimentalists, conventionally named Alice and Bob (A,B), measure the spin component of each particle along 
a certain axis when the particles are very far apart compared with the range of any force of mutual interaction and 
when they have not interacted with each other for a long time. 
Alice measures the spin component on the â axis for the particle traveling to the left, particle a, while Bob measures 

the component along the b̂ axis of the particle traveling to the right, particle b. Let us first study the case where 
ˆAlice and Bob both use the z-axis, â = b = ẑ. For the moment we can just think of the spins as a property of the 

particles, as it could be e.g. the color of a ball. 
Alice measures the z component of the spin of particle a, Saz , with the result ± 1 

2 , and Bob measures Sbz. They 
obtain a series of random results, when they repeat the experiment. After the series of measurements has been 
completed, Alice and Bob meet and compare their results. They conclude that the results for each pair exhibit a 
perfect (anti-)correlation. When Alice has measured +1/2 for particle a, Bob has measured −1/2 for particle b and 
vice versa. 
Upon reflection, this result is not very surprising. It can occur also for classical particles (or travelers!). Two travelers 
a and b, each carrying a suitcase, depart in opposite directions from the origin and eventually are checked by two 
customs inspectors Alice and Bob. One of the suitcases contains a red ball and the other a green ball, but the travelers 
have picked up their closed suitcases at random and do not know what color the ball inside is. If Alice checks the 
suitcase of traveler A, she has a 50% chance of finding a green ball. But if in fact she finds a green ball, clearly Bob 

17 A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 - 780 (1935)
 
18 L. E. Ballentine, Quantum Mechanics A Modern Development, World Scientific Publishing (1998)
 

44 

http://link.aps.org/doi/10.1103/PhysRev.47.777


�

� � � �

� � � � � � � �

� �

� �

� � � �
� � � � �

�
� �

�

�

�

will find a red ball with 100% probability. Correlations between the two suitcases were introduced at the time of 
departure, and these correlations reappear as a correlation between the results of Alice and Bob. 
However, the situation becomes weirder if Alice and Bob decide to use the x axis instead of the z axis for another 
series of measurements. In the classical case, this would correspond to the fact the ball hidden in the suitcases 
possess another property (for example they are shiny or matte). Again, one would obtain the same result of perfect 
anti-correlation of the results (try e.g. expressing the Bell state in the x basis). 
In the usual classical picture of the world, one would assume –as stated by Einstein– the hypothesis of Locality 
and Realism (both of these hypothesis should be true at the same time). What do these hypotheses entail? 

1. Realism: At preparation, particles a and b possess both the properties (color and gloss for the classical balls and 
σx, σz , with σx,z = x(z) = ±1 for the quantum particles). 

2. Locality: When I measure particle a I cannot modify instantaneously the result of measuring particle b, since b 
already had its own properties and there is no action at distance (faster than light). 

In the EPR paper, the authors argue that since QM does not give a description coherent with these hypotheses, 
there must be a more complete theory able to fully describe reality while respecting these hypotheses. 
The search for a theory of hidden variables is still open, but it has been shown already that local realism is in conflict 
with experiment. 
The Bell inequalities want to show that these two hypotheses cannot be true together for quantum mechanics. They 
describe a more general experiment to what done until now. 

I - Assume that A measure her particles along the axis aa = az while B along the axis ab such that ab · az = cosϑ. The 
results of the measurements are 

(
σA
) 
= a and 

(
σB 
) 
= b and we are interested in the correlation ab). This is given z b 

by
 
1
(

σAσB 
) 
= ( 01|σAσB |01)+ 01|σAσB |10)+ 10|σAσB |01)+ 10|σAσB |10)z b z b z b z b z b2

1 ✘ ✘ 
= 

( 
0|σA|0) 1|σB 0|σA|1) 1|σB |1) b |0)+✘✘✘|0) b |1)

)
b |1)+✘✘✘

b |0)+ 1|σA 0|σB 1|σA 0|σB 
z z z z2
 

1
 
= 

( 
1|σbB |1) − 0|σbB |0)

) 
= − cosϑ 

2 

where the last equation comes from the fact that σB = + sinϑσBcosϑσB 
⊥ .b z 

′ b ′ II - Now we choose two other directions aa anda each rotated by some angle ϕ with respect to the original directions. 
Then what we have done is a collective rotation of the coordinate frame, but we have seen already that the Bell state 
is unchanged by such a rotation. Thus by repeating the same analysis we will find that a ′ b ′ ) = ab) = − cosϑ. 
III - Consider then the following experiment: 

′ A can measure either aa or aa
 
ab ′
 B can measure either ab or 

and we want to look at the correlation of the outcomes ab), a ′ b), ab ′ ) and a ′ b ′ ). The quantity we are interested 
in is actually S) = ab)+ a ′ b ′ )+ ab ′ ) − a ′ b). There are two possible strategies: 
a) One can measure each correlation in separate experiments (i.e. we measure separately ab) etc.). We then expect 
the results ab) = − cosϑab, a ′ b) = − cosϑa ′ b etc. and 

S) = −(cosϑab + cosϑa ′ b′ + cosϑab′ − cosϑa ′ b) 

b) One can look at the outcome of the quantity Sk = (σAσB )k +(σA 
′ σB )k +(σAσB )k−(σA 

′ σB )k at each k
th experiment. a b a b′ a b′ a b 

1Then the expectation value is S) = limN→∞ 
j

Sk. Notice that this definition of the quantity Sk implies that N k 
′ even in experiments were we measure e.g. along aa (i.e. we measure σA and not aa , σA still has a well-defined value ′ a z 

(realism). We can rewrite Sk as
 
Sk = σa

A(σb
B + σb

B 
′ )k − σa

A 
′ (σb

B − σb
B 
′ )k
 

In each measurement, the possible results for σB are ±1 (and the same for σB ) so that the possible outcomes for b b′ 

σB +σB are {0, +2, −2} and the same for the difference. Whenever σB +σB = ±2 we have however that σB −σB = 0b b′ b b′ b b′ 

and vice-versa. Thus the possible outcomes for Sk are ±2σa or ±2σa ′ or finally Sk = ±2 (since outcomes for σa are 
±1 and we assume that the act of measuring B does not change the outcome of A). Then, the expectation value for 
any possible choice of the axis direction is bounded by 

−2 < S) < +2 
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If we now go back to the first strategy a) and choose as the measurement axes 

aaa a= az, aa ′ = ax, b = az − ax, b ′ = az + ax 

we find : 
ab

√
� ) = − cosϑab = −1/ 2 �a ′ b ′ ) = − cosϑab = 

√ 
−1/ 2 

�ab ′ ) = − cosϑab′ = −1/ 
√
2 

√ 
�a ′ b) = − cosϑab = 1/ 2 

which yields 
4 �S) = �ab)+ �a ′ b ′ )+ a

√ 
� b ′ ) − �a ′ b) = −√ = −2 2 < −2 

2 

Thus the two hypothesis that we assumed in b) to arrive at the conclusion 2 < S < +2 must be wrong (or at 
least one of them: which one?) 

− � )
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6.6 Teleportation (Bennet, Peres, Brassard) 

Two parties -Alice and Bob- want to transfer an unknow quantum state. They share a resource prior to the transfer, 
a pair of qubit in one of the Bell States, let say |Φ+) = (|00) + |11))/2. Alice possesses also another qubit in an 
unknow pure state |ψ) = a |0) + b |1), that she wishes to send to Bob. The circuit below shows the steps in the 
teleportation algorithm, starting with the gates that create the Bell State on the ancilla qubits. 

|ψ)C • H • 

|0)A H • × • 

|0)B × X Z |ψ)B 

Fig. 10: Circuit for teleportation: the qubit |ψ�C (initially in Alice’s hands) is teleported to Bob (|ψ�B) by using two qubits in 
a |  Bell pair Φ�+AB . 

Alice then transforms her unknown qubit and her part of the shared pair to the Bell State basis by a cnot and a 
hadamard gate. She then measures them in this new basis and via a classical communication channel, tells the result 
of the measurement to Bob. Bob performs then an operation on his qubit (the second half of the entangled pair) 
based on whatever the measurement result was: 

if |00) → do nothing 

if |01) → σx 

if |10) → σz 

if |11) → σxσz 

This operation leaves Bob’s qubit in the same state of the one initially owned by Alice. Notice that no superluminal 
speed of information transmission is proven by quantum teleportation, since classical communication is needed. Also, 
no cloning of an unknown, arbitrary state is happening (which is forbidden by quantum mechanics), since the original 
state is destroyed in the process. 
The state of the 3 qubits at each step is as follows: 

H
1. |ψ00) −→ A ( ψ

√
| 00)+ |ψ10))/ 2 (with |ψ

C

) = a |0)+ b |1))
ANOT2. B

√
−→ (

C NOT

| ) + 
ψ00 + |ψ11))/ 2 = |ψ) |Φ)

3. B−→ A (a |000
C

)+ b |110
√

H

)+ a |011)+ b |101))/ 2 

4. −→ [|00) (a |0)+ b |1)) + |01) (a |1)+ b |0)) + |10) (a |0) − b |1)) + |11) (a 
e

|1
M

) − b |0))] /2 
as.+U

5. −→ C |ψ)B = a |0)+ b |1) 

References 
• A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein & A. Zeilinger, 
High-fidelity transmission of entanglement over a high-loss free-space channel, Nature Physics 5, 389 - 392 (2009) 
Abstract – Quantum entanglement enables tasks not possible in classical physics. Many quantum communication 
protocols1 require the distribution of entangled states between distant parties. Here, we experimentally demonstrate 
the successful transmission of an entangled photon pair over a 144 km free-space link. The received entangled states 
have excellent, noise-limited fidelity, even though they are exposed to extreme attenuation dominated by turbulent 
atmospheric effects. The total channel loss of 64 dB corresponds to the estimated attenuation regime for a two-
photon satellite communication scenario. We confirm that the received two-photon states are still highly entangled 
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by violating the Clauser-Horne-Shimony-Holt inequality by more than five standard deviations. From a fundamental
 
point of view, our results show that the photons are subject to virtually no decoherence during their 0.5-ms-long
 
flight through air, which is encouraging for future worldwide quantum communication scenarios.
 
Building on work done in:
 
• R. Ursin, et al (& A. Zeilinger), Entanglement-based quantum communication over 144 km, Nature Physics 3, 481 
- 486 (2007) 
Abstract – Quantum entanglement is the main resource to endow the field of quantum information processing with 
powers that exceed those of classical communication and computation. In view of applications such as quantum 
cryptography or quantum teleportation, extension of quantum-entanglement-based protocols to global distances is of 
considerable practical interest. Here we experimentally demonstrate entanglement-based quantum key distribution 
over 144 km. One photon is measured locally at the Canary Island of La Palma, whereas the other is sent over an 
optical free-space link to Tenerife, where the Optical Ground Station of the European Space Agency acts as the 
receiver. This exceeds previous free-space experiments by more than an order of magnitude in distance, and is an 
essential step towards future satellite-based quantum communication and experimental tests on quantum physics in 
space. 
• T. Schmitt-Manderbach, et al Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution 
over 144 km Phys. Rev. Lett. 98, 010504 (2007) 

6.7 Deutsch-Jozsa algorithm 

To illustrate the power of quantum computation, we present one of the simplest quantum algorithm, the Deutsch-
Josza algorithm. The algorithm’s goal is to decide whether a given function f(x) is constant for all values of x or 
balanced, that is, equal to 1 for half of the values of x and to 0 for the other half. The goal is to make this decision 
with the minimum possible number of evaluations of the function value on trial x and with a given probability of 
arriving at the correct answer. 
If the function f is defined on a space of dimension 2n (i.e. x can be stored in a n-bit string), the classical algorithm 

can decide the function with at least 2
n 

+ 1 queries, while the quantum one only needs one query. The steps of the 2 
algorithm are illustrated in the following picture, where H is the Hadamard gate and Uf is a unitary gate which 
transform the state |x, y) to Uf |x, y) = |x, y ⊕ f(x)) (⊕ indicates the addition modulo 2). 
In the case where f is a function from 1 bit to 1 bit, there are only 4 possible f , two constant and two balanced 

|0〉 
n 

|1〉 

H H 

H y f(x)⊕y 

Uf 

x x 

Fig. 11: Circuit implementing the Deutsch-Josza algorithm. 

(f1(x) = 1, f2(x) = 0, f3(x) = x, f4(x) = x̄ = NOT x). Since Uf gives the sum y ⊕ x, these functions correspond to 
the following Ui: 

f1 → U1 = 1x ⊗ UNot,y 
f2 → U2 = 1x ⊗ 1y (2) 
f3 → U3 = UCNot 
f4 → U4 = UCNotUNot,y 

Deutsch’s algorithm is a perfect illustration of all that is miraculous, subtle, and disappointing about quantum 
computers. It calculates a solution to a problem faster than any classical computer ever can. It illustrates the subtle 
interaction of superposition, phase-kick back, and interference. Finally, unfortunately, is solves a completely pointless 
problem. 
We begin by illustrating how superposition of quantum state creates quantum parallelism or the ability to compute 
on many states simultaneously. 
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Given a function f(x) : {0, 1} → {0, 1} using a quantum computer, use two qubits x, y and transform them into 
|x, y ⊕ f(x)) (where ⊕ represents addition modular two). We use two qubits since w

|
e wis

)
h to leave the input x or 

the query register, “un-changed”. The second qubit, y, acts as a result register. Let Uf be the unitary transform that 
implements this. 
Suppose we wish to calculate f(0), then we could input x as 0 , and y, our output register, as 0 and apply the Uf 
transform, to obtain |0) ⊗ |0) = |0, 0 0, 0 f(0) . If inste

|
ad 
)
we want to calculate f(1), then 

|
w
)
e could input x as 

|1), yielding the transformation : 
) → | ⊕ )

|1)⊗ |0) = |1, 0) → |1, 0⊕ f(1)). In a quantum computer we can actually query the 

results of 0 and 1 simultaneously using quantum parallelism. For this, let x equal ( 0 + 1 ) / 
√ 
2 and y equal 0. From 

| ) |0,0)+|1,0) | ) |0,f (0))+|1,f (1)
| ) | )

the input ψ1 = √ we obtain the output ψ2 = )√ . Uf is applied to |0) and |1) simultaneously. 
2 2 

This is known as quantum parallelism but there is still a problem since measurement produces either 0, f(0) or 
|1, f(1)). Hence we need to be clever about what type of question we ask, and how we go about extracting t

|
he answ

)
er. 

For this we use the circuit in the figure, which exploits another quantum mechanical property: interference. 
The initial state is |ψ0) = |0, 1). We then apply the H gate to the query and result registers to obtain: |ψ1) =
√ 1 (
2

|0)+ |1)) √1 (|0) − |1
2 

)) 
Now, let’s examine y 
Suppose f(x) = 0. T

⊕ f(x): 
hen y ⊕ f(x) = y ⊕ 0 = √1 (|0⊕ 0) − |1⊕ 0 = 

1

)) √ 1 (
2 2 

|0) − |1)) 
Suppose f(x) = 1. Then y ⊕ f(x) = y ⊕ 1 = √ (|0⊕ 1) − |1

2
⊕ 1 = √ 1 (− |0 + 

f(x)

))
2 

 

) |1)) 
We can compactly describe this behavior as y ⊕ f(x) = (−1) √ 1 (

2 
|0) − |1)). 

Thus, Uf transforms x) 1 (
2 

|0
f (x)

| √ ) − |1)) into: 
(−1) |x) √ 1 (|0

2 
) − |1))

Or [w e can say that:  
U √ 1f (| ) | f (0)

0 + 1
2

)) √1 ( − |1))
2 

|0)
]
= 1 

[
(−1) |0 ( 0) − |1 ) + (2 ) | ) − f (1)

1) |1) (|0) − |1))
Sup[pose f  is constant, that is f(0) = f(1), then: 

]

U √1f (|0)+ |1)) √1 (|0) − |1)) = ±√1 (|0)+ |1)) √1 (
2 2

|0) − |1))
2 2

Sup[p ose instead that f is balan

]

]ced, that is f(0) = f(1), then: 

U √1f (|0)+ |1)) √1 (|0) − |1)) = = ± (|0) − |1)) 
2 2 

√1
2

√1 (|0 |1))
2

) −
Now apply the Hadamard gate to the first qubit. Just before the measurement the system is in the state 

 
± √1 |0) (|0) − |1)) if f(0) = f(1) 

|ψ 2 
f ) = ± √1 |1) (|0) − |1)) if f(0) = f(1) 

2 

  
0 + 1Since in our case f(0) ⊕ f(1) = 0 ⇔ f(0) = f(1) we can write this as |ψf ) = ± |f(0)⊕ f(1))

[
| ) | ) √ Hence it is 

2 

possible to measure the first qubit to find f(0) f(1).
 

]

The Deutsch-Jozsa algorithm is a generalization 
⊕
of Deutsch’s algorithm to a function f(x) : 2n 0, 1 that f is
 

either constant or balanced. The algorithm just generalize to a larger number of qubits.
 
{ } → { }
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