Course 22.611j		I.H. Hutchinson
23 Sep 03	Problem Set 3	Due 30 Sep 03

- 1. Consider a charged particle moving in the x-y plane under the influence of a magnetic field varying slowly with x, pointing in the z-direction, $\mathbf{B} = B(x)\hat{\mathbf{e}}_z$ and uniform electric field in the y-direction, $\mathbf{E} = E\hat{\mathbf{e}}_y$, (E/B < c). Show that as a result of the grad-B drift, the particle has work done on it by the electric field. Thus, show explicitly from conservation of energy, that the quantity $\frac{1}{2}mv^2/B$ is constant in this situation.
- 2. The $\mathbf{E} \wedge \mathbf{B}$ drift cannot exceed the speed of light. Therefore particle motion in crossed electric and magnetic fields needs to be treated relativistically when $\mathbf{E}/\mathbf{B} > \mathbf{c}$. [Note that this occurs as $\mathbf{B} \to 0$.] By integrating the relativistic equation of motion:

$$\frac{d}{dt} \left[\frac{m_o \mathbf{v}}{\sqrt{(1 - v^2/c^2)}} \right] = q \left(\mathbf{E} + \mathbf{v} \wedge \mathbf{B} \right)$$

or otherwise, show what happens to the particle orbit when E/B > c, and sketch the orbit when **B** is in the z-direction, **E** is in the x-direction, and z-motion is neglected.

- 3. Electrons in a magnetic mirror have a distribution function $f_o(\mathbf{v})$ at its center, where the field magnitude is B_o . The highest field, in the mirror throat, is B_1 . Calculate the fraction of electrons that is trapped if f_o is
 - (a) A Maxwellian $f_o = \left(\frac{m}{2\pi T}\right)^{3/2} \exp\left(\frac{-mv^2}{2T}\right)$ (b) A squared Lorentrian $f_o \propto \frac{1}{\left(1+\frac{v^2}{v_t^2}\right)^2}$ (c) Proportional to $\frac{v_{\perp}}{v} \exp\left(\frac{-mv^2}{2T}\right)$
- 4. A particle of mass m and charge q moves in uniform magnetic field B pointing in the z-direction under the influence of a line-charge of magnitude Q per unit length aligned along the z-axis. (The configuration is invariant in the z-direction.)

(a) Calculate the trajectory of its guiding center and the time elapsed before the x and y coordinates return to their initial values.

(b) If the magnetic field is allowed to vary in time with a small constant time derivative dB/dt, calculate the evolution of the radial position of the guiding center $(r_g = \sqrt{(x_g^2 + y_g^2)})$ and of the particle kinetic energy.

(c) Is the sum of particle kinetic energy and electrostatic potential energy $(q\phi)$ constant? Do the charge and mass of the particle matter?

- 5. A uniform hydrogen plasma of infinite length, and temperature T equal for electrons and ions, surrounds a straight infinite cylindrical conductor carrying current I. If the perturbation of the magnetic field by currents in the plasma is negligible,
 - (a) What is the mean electron drift?
 - (b) What is the mean ion drift?
 - (c) What is the mean current density?
 - (d) [This last part is quite difficult and will be for bonus marks]. If the perturbation of the plasma currents to the magnetic field is *not* negligible, and the inner edge of the plasma is at r = a, calculate the magnetic field as a function of radius.