Massachusetts Institute of Technology Department of Physics Physics 8.022 – Fall 2003 Final Examination Monday, December 15, 2003, 09:00AM-11:00AM

Total points in the exam are 100. **ALL** problems receive **equal** points (25 each). Work on all problems. Work on problems you are most comfortable with **first**. This is a closed book and closed notes exam. An equations table will be given to you.

Problem 1

You come across a spherically symmetric electric field with the following form:

$$\vec{E}(r) = E_0 \left(\frac{r}{R}\right)^2 \hat{r} \quad 0 \le r \le R$$

$$= 0 \quad R < r \le 2R$$

$$= E_0 \left(\frac{r}{R} - 2\right) \hat{r} \quad 2R < r \le 3R$$

$$= E_0 \left(\frac{3R}{r}\right)^2 \hat{r} \quad 3R < r \le 4R$$

$$= 0 \quad r > 4R$$

 \hat{r} is the radial unit vector in spherical coordinates.

(a) For all r, what is the charge Q(r) contained within a radius r?

(b) Calculate the charge density $\rho(r)$ everywhere.

(c) Are there any surface charges in this charge distribution? If so, identify their location and give the magnitude of the surface charge density σ at each such location.

(d) The charge distribution is modified in some way. The new electric field is

$$\vec{E}(r) = E_0 \left(\frac{r}{R}\right)^2 \hat{r} \qquad 0 \le r \le R$$

$$= 0 \qquad R < r \le 2R$$

$$= E_0 \left(\frac{r}{R} - 2\right) \hat{r} \qquad 2R < r \le 3R$$

$$= E_0 \left(\frac{3R}{r}\right)^2 \hat{r} \qquad 3R < r \le 7R/2$$

$$= 0 \qquad r > 7R/2$$

Compute the difference in energy between this and the old configuration, $U_{\text{new}} - U_{\text{old}}$. Was work done on the system or did the system do work?

Problem 2

The circuit illustrated in the following figure is driven by an EMF $V = V_o e^{i\omega t}$.

- At time t_1 , the switch is closed on A.
- (a) Calculate the complex impedance Z_{XY} of the circuit.

(b) What is the non-zero frequency ω_o that maximizes the average power dissipated in the resistor R?

3) For $\omega = \omega_o$, what is the average power dissipated in the resistor R?

4) Calculate I_R , the current flowing through the resistor R when $\omega = \omega_1 = 1/\sqrt{2CL}$. What is the phase between I_R and V when $\omega = \omega_1 = 1/\sqrt{2CL}$? Is I_R leading or lagging V?

At time t_2 , the switch is closed on B.

- 5) What is the complex impedance Z_{XY} of the circuit now?
- 6) How does $|V_R|$ depend on the frequency ω ? Draw a graph.

Problem 3

The electric field of a traveling electromagnetic wave in vacuum is given by $\vec{E} = 10(3\hat{x} + 4\hat{z})sin(ky + 2\pi 10^9 t)$ statvolt/cm.

All given and requested numerical quantities are in CGS units.

- (a) What is the direction of propagation of this wave?
- (b) What is the frequency f of this wave?
- (c) What is the wavelength λ of this wave?
- (d) What is the amplitude of the electric field E_o ?
- (e) What is the amplitude of the corresponding magnetic field B_o ?
- (f) Find the corresponding magnetic field \vec{B} to the given \vec{E} above.
- (g) What is the polarization of this wave?
- (h) Find the Poynting vector \vec{S} for this electromagnetic wave.

(i) A totally absorbing photodetector of flat surface A lies perpendicularly to the direction of propagation. What is the pressure the wave exerts as impinges on it? What is the intensity of the electromagnetic radiation collected by the photodetector?