8.022 (E&M) — Lecture 16

Topics:
= Inductors in circuits
= RL circuits
= LC circuits

= RCL circuits

Last time
[ |

Our second lecture on electromagnetic inductance

= 3 ways of creating emf using Faraday'’s law:
= Change area of circuit S(t)
= Change angle between B and S = AC generators
= Change B magnitude

= Self and mutual inductance
= Energy stored in inductor

= Applications: transformers

Today is our 3 lecture on inductance: inductors in circuits
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RL circuits: intuitive description
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= At t=0, close S1 : L
= Lentz's law opposes change in ®g through L
= Since @y (t=0)=0, L will impede current flow - 1(0)=0
= As time passes, | will start flowing saturating at I=V/R
= After a long time, simultaneously open S1 and close S2:
= Lentz's law opposes change in ®g through L
= Back emf will keep current flowing for a while
= R dissipates power - the current will die exponentially
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RL circuits: quantitative description
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= At t=0: close S1 L
m Kirchoff'srule #2: V - IR - L % =0
Rewrite as: —I+K:£ﬂ = L:—Edt
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RL circuits: quantitative description(2)

I
= At t=t’: open S1 and close S2
m Kirchoff’s rule #2: —JR - Lﬂ =0
at
1=1(t) t
Rewrite as: —Izid—/ = _[ d—’z—jﬁa’t
R dt Al L
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RL circuits: interpretation of results

v

= How do we interpret these results?
= Inductors cause currents to have an “inertia”

= If no current flowing: L forces | to build up gradually

= If current is flowing: L will do what it takes to make it continue (back-
emf)

= Asymptotic behavior when “charging” L
= At t=0, 1=0, as if L were an open circuit t=0: L — open circuit
= At t=infinity, 1=V/R, as if L did not exist t=o0: L — short circuit
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RL circuits: time constant

v

= Results of RL circuit are exponentials, as in RC circuits
= RC circuit: time constant t=RC
= RL circuits: time constant t=L/R
= NB: time constant is the time it takes the exponential function to
decrease (increase) to 1/e (1-1/e) of its original (final) value
s Check units
m cgs: [LV/[R]=(sec?/cm)/(sec/cm)=sec
s Sl: [LV/[R]= H/Q = (V sec/A)/(V/A) = sec
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LR time constant

I
= Consider the following = On the oscilloscope:
circuit = Vit » Vi, Ve, 10 the circuit

v

~+

ANV
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va k t
V, =L di/dt | >
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LC circuits
[

\ c

Start with charged capacitor and close switch at t=0:

= Kirchoff's second rule: 9. L%

2

Since I=—d—Q: d ? + g:
dt at LC

= How to solve this? Educated guess: Q(f) = Acosmyt + Bsina,t
1

dZQ 2 2 H 2
= =—w;Acos ot —w;Bsinat = -w;Q(t) = |w, =
0 0 /LC

ar?
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LC circuits: solution
[

= Plug this in the differential equation:

d*Q(t) 1 ) 1
=——0() = -QU)=-—"—"20(t) = |, =
e 10 Wl =-7500) = o= 7
Determine constants A and B from initial conditions:

= Q(t=0)=Q,= A cos(0) + B sin(0) 2> A=Q,

= 1(t=0)=0 = -myA sin(0) + o,B cos(0) - B=0

= Complete solution:

0(t) =0, cosmt = V,(t) = @ - %coswof

_dQ _ Q,
I(t) = pm Jic sina,t

= NB: current and voltages are off by 90 degrees
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LC circuits: solution

I
Graphical representation of the solution:
I(t) A
V()
t
V.(t) = %cos oyt
0 NB: Q and | have a phase of 90 deg
I(t) = == sing,t
® Jic o
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Energy conservation
I

= Energy stored in the capacitor over time:

U.(t) =% :%coszw t

0

= Energy stored in the inductor:

2 2
U(t) = %Ll(t)z - %L% Sin? yt = g—"csinz ot

= Total energy:

2 2
u@)y=u,(t)+U.(t) = % (sin® m,t + cos® wyt) :g—f’c
=  What is happening over time?
= Energy swings back and forth between C and L but at any moment in time
the total energy is equal to the energy initially stored in the capacitor:

Energy is conserved!
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RCL circuits

= LC circuits don't belong to this world:

= R is never exactly 0! ‘
= So let's concentrate on RCLs c

= Start with a charged C R
= Intuitively:

s LC - oscillatory part: sin and cos solution

= R - dissipative part: exponential damping L
= Rigorous solution: 2255

Use Kirchoff: Q. IR -L ar =0

c at
2
Sincel(t):-d—Q = d?+ w+iozo
dt at Ldt LC
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RCL circuits: solution
[ [

= How to solve this equation?
» Educated guess!

= Intuition tells us that the solution must have an oscillatory term
and a damping term

» Strategy #1: exponential * sin/cos functions:
Q(t) =e*'"(Acosayt + Bsinwyt)

Very heavy on algebra!!!

2
a9, R4 1

hulh 25 =0
at? L dt LCQ

» Strategy #2: complex exponentials
= ldea: the solution is the real part of a complex solution

Oty = Ae™e™ = Q(t) =Re|Q(1)]
Much easier algebra!!!

NB: a can be complex!
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See handout on complex number
+ sections next week

Complex number notation
I

= Complex number: number with both a real and an imaginary part
A

. I y :
Z=X+IlYy with i=y/-1 X Z=Xx+ly

s Complex plane representation z=(x,y) 2>

= Another useful representation X

Set magnitude r=,/x*+y” and phase #=arctg y

==z =r(cosé+/sinb)
X

= Given Euler's relation: €’ =cos@+/siné
= Prove it using Maclaurin expansion (see handout)

= 2z =re'” (Phasor representation)
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RCL circuits: solution (cont)
I

Plug expected solution Q(f) = e™e’™ into the differential equation

2~ o) ~
d?+ Ed_0+i0:0
at L dt LC

a0 . . d?*Q ~ ~ R 1
E=la0, d[2 =—a20 = Q[-a2+laT+E}=O

2
Simple quadratic equation: -a?® + /'azﬂ+i =0 = a=/—¢= L—R—Z
L LC 2L LC 4L

P R
. O.(t) = Ae'he 2'e Vi ar
This gives us 2 complex solutions for Q(t): '
R 1 R
0 (t) = Ae'e e |
R 1 R2

= real part: Q(t) = Ae 2L cos(+ot +¢,) with o= YA
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The weak damping limit
[

Weak damping limit: small R> the damping is small - several
oscillations occur before amplitude start decreasing in sizable way

1ty --929 _ Qoe’zif [@sin(ot + ¢,) + Z’iLcos(wt +4,) 1

at
When »>>R/(2L) (damping limit), the second term can be ignored and
,it . i 1 RZ l
/1 (t) - Ae ?* wsin(wt) with o=,|— - — ~ — =
“ @sin(@r) Nic ez " Jic

R
Q(t) ~ Q.e o’ cos(a,t + ¢,)
R
= final solution for "weak damping": { /(¢) ~ a)oooeiﬂr sin(w,t + ¢,)
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RCL in weak damping limit
I

= Initial conditions: Q(0)=Q,=Acos(4,) and 1(0)=0=Aw,sing, = A=Q,; ¢, =0
R t
Q(t) ~ Q,e 2t cos(w,t)
R
I(t) ~ 0,06 2 sin(w,t)

= Graphical representation of solution:
A

Q)

\/ \/ t
Demo L2: Dumped RCL
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Summary and outlook

= Today:
What happens when we put L in circuits?
= RL circuits: exponential solutions \g
= LC circuits: oscillatory solution AVAVA

= RCL circuits: damped oscillation /\/\/\

= Next Tuesday:
= Quiz # 2: good luck!!!
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