8.022 (E&M) — Lecture 17

I
Topics:
= Discussion of Exam 2 and make-up exam

= Back to E&M:

= RCL circuits: recap undriven RCLs, driven RCLs, inductance

Last time
I

= What happens when we put inductors in circuits?

= RL circuits: exponential solutions

= RCL circuits: damped oscillation

= LC circuits: oscillatory solution /\/\/\

= RCL circuits are particularly interesting

= Let's see them in some more detail...
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Undriven RCL circuits: recap
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Kirchoff's second rule: l
2

L d_? + d_o + i

at at C

Does it look familiar?

0

Q=0

= Mechanics: harmonic oscillator!

L d2Q/dt2 | ma=m d2x/dt? L ~ m: inertia term
R dQ/dt k: v = k; dx/dt R ~ k; > friction (damping) term
1/CQ K, X 1/C ~k, > elastic term due to spring
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Undriven RCLs:

solution

I
= Differential equation governing loop: I I
2
a ? + 5 d_Q+ LQ =0 O
at L dt LC
R
= Solve using complex number notation: ,
—at ,lot f‘(ﬂ;“ﬁ’“\

o) =e”
NB: f=—a +/w is a complex number, with ¢ and o real
e = damping term, e’'= oscillatory term
Throw this into the equation and we get a quadratic equation in £:

__R, /R_Z_L
2L N4z LIc
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RCL circuits: solution ' ¢

2 1 /L \\
urelyreal; —-—>0 = R>2,|— =
* B purely a2 IC C

e B purely imaginary: = £=0 = undamped LC =

2
s RL|F 1.
2L N4z Lc R2 1
e (3 truly complex: R>0 and ——— < 0=
é(t) _ eﬂt _ e—ate/mt .
R
a—— and 4/ —
LC 4L
R 1
When YT =0 critical damping (fastest way to damp an oscillator).
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RCL in weak damping limit
I
= Initial conditions: Q(0)=Q,=Acos(4,) and 1(0)=0=Aa,sing, = A= Q,; ¢, =0
o) ~ Ooefﬂ[ cos(w,t)
1(2) ~ a)OOOe_Z% sin(a,t)

= Graphical representation of solution:
A

Q)

v

(VAR
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Energy

= Energy of the circuit in the weak damping limit:

2 2
U.(t) = Oz—g) = %e""“ cos’ wyt
l 2 l 2 2 —Rt/L o;A2 002 —Rt/L o;A2
AOE ELI(z‘) =5 % LQ%, e sin® ayt = Ee sin® myt
2 2
=S Ut)=U,(t)+U.(t) = g—"ce”"’“(sin2 wyl +cos® ayt) :g—‘)ce’”’“

= Since Q%/2C=total energy stored initially in the system
- U decreases exponentially over time: as expected!
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Quality Factor

= Definition 1: the quality factor measures how many times the circuit oscillates

before it loses a certain amount of energy
In the time 7=L/R the energy decreases by AU(t)=1/e

The oscillation is oz radians = |Q = w7 = %

2C

U(t)=0_oze—/?t/L

= Definition 2: the quality factor measures the ratio between energy stored (in

C and L) and average power dissipated (in R)

For an oscillation with frequency w = |Q = @

Energy stored _ LIG12 ol

<Power>  RI?/2 R

= Q factor can be defined for any system that creates vibrations.
= Acoustics: Q of a tuning fork is much higher than the Q of a table...
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Today'’s goal:
Driven RCL circuits

I
= (5 isanACemf. I I
= AC voltage supplied to the circuit: C
emf (t) =V, cos ot
= Convenient assumption: /_\_/ R
V() = Re[V(t)] with V(1) =V,e™ ,
= NB:V, is purely real! U0 =
= How to solve this? Just generalize what we used for DC!
= Sum of voltage drops in loop is equal to emf (Kirchoff #2)
Vo (8) =V () + V. (8) +V, (2)
Ve (£) =V () + V. (£) + V()
= The same current must pass through every circuit element
1) =1.() = 1.(t) = 1,(2)
6 sciola—mr 1O =1@) = 1) =1,(t) 1
I

= Consider a B constant in magnitude and a loop rotating
around its axis with angular velocity o

W\ A
g

B A
/

v

v

v

= If Sis the area of the loop: B+da = BS cos 6§ = BS cos ot
S

= Faraday: 10

|e.m.f.| ==—(BScoswt) = 2 BS sinwt
c ot c

= This is how AC power is generated. In U.S.: v=60 Hz > ©=377
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AC emf + resistor R
[ .

= Ohm’s law holds for AC too: —
V()=V,(t) =1(t)R

= Let's plot I(t) and V(t) on the same graph:

sz\ / : / s
AvARv

- In a resistor the voltage and the current are in phase
(peak voltage occurs at the same time as peak current)

&
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Reminder: phasor notation

Any complex number z=Xx+/ y with i=v/-1

can always be represented as the product of a real number (magnitude)
and a complex exponential:

= z=re'” (Phasor representation)
where magnitude r=,/x*+y? and phase Hzarctgx
X

= z=r(cosf+isinb)

and given Euler’s relation: X Z=X+iy
e’ =cos@+/siné
which can be easily proved using y

Maclaurin expansion

v
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AC emf + R with phasors

= The same information can be represented with phasors in the
complex plane: V(t) _RI()

Im(1) Im(1) —

o Yo

Re(V) Re(l)

- In a resistor the voltage and the current are in phase

In phase means that both phasors are at the same angle
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AC emf + capacitor C
I

= Connect AC emf across a capacitor C:

ZOEAGES v ©

= Since V(t)=V,coswot and I(t)= dQ/dt:

- 1(t) LEADS V(t) by 90 deg / V(1) lags I(t) by 90 deg
(maxima in I(t) occur before maxima in V(t))

RARVA

= -wCV, sin wt= oCV, cos(at + %)

|
1M

|
IS
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Ohm'’s law revisited and Impedance
I

= Relation between I(t) and V(t) becomes more obvious when using
phasor notation:

V.(t) =V, cos ot =Re [VC (r)] with — V(r) =V,e™
= For the current:

/() = wCV,, cos(at + %) -Re [ic (r)]

~ il wt+Z i iZ
with /(t) = a)Cl/Oe( 2] =/iwCV,e'” (remember: e? =)
= Combining complex currents and voltages we can write:

V(t) = i(t)ZC (complex equivalent of Ohm's law)

. . . 1
where Z. is the impedance of a capacitor: |Z_ :7
1o
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AC emf + C: phasor representation
I
= Given

V()=V,e™ and [I(t)=2ZV,e™ =ioCV,e™

V(t) and I(t) can easily be represented in the complex plane:
Im(V) Im(I)

of + /2
\m

Re(1) Re()

NB: I(t) is ahead of V(t) by 90 degrees: I(t) leads V(t) by 90 degrees
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AC emf + inductor L
B

s Connect AC emf across an inductor L:

dl
Vi =V, =12 C

= Since V(t)=Vcosmt:

a L w
V() -

=

Vv v, . Vv
d—I:—°COSwt = [({)= —%sinwt = —2cos wt -~
ol L 2

- 1)

\/ VAP — VO

- 1(t) LAGS V(t) by 90 degrees, or V(t) LEADS I(t) by 90 degrees

(maxima in I(t) occur before maxima in V(t))
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-z

-a

Impedance of inductors
[ [
= Using phasor notation:
V. (t) =V, cos wt =Re [v;(t)] with  V(t) =V,e™”
= The current is:

1(t) = %cos(a)t - g) =Re[ /(1) ]

" V., i v A )

with /(¢) =—°e[ 2] =—2-¢' (remember: e ? =(/) g,
ol /ol

= Combining complex currents and voltages we can write:

V(t) = 1(2)Z,| (complex equivalent of Ohm's law)

where Z, is the impedance of an inductor:
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AC emf + L: phasor representation
I
Vo ot

= Given V(¢)=V,e™ and [/(t)=2ZV,e™ =—0e
io

V(t) and I(t) can easily be represented in the complex plane:

Im(V) Im(I)

Nor

Re(V) Re(I)
ot — /2

NB: I(t) is 90 degrees behind V(t): I(t) lags V(t) by 90 degrees

G. Sciolla — MIT 8.022 — Lecture 17 21

Driven RCLs using inductance
I

= Inductance simplifies the study of driven : | |
RCL circuits
C

= Let's work with complex numbers and use
Ohm’s and Kirchoff's extensions /-\/ R

Vo () =V (£) +V.(£) +V,(£) I
SRER

V.(t) = RI(t)

Since @m=4ho:#?no :@szho@+{m—%ﬂ}4mzn
(0]

(0]

V,(t) = Z,1(t) = ioll (t)

where total impedance of the circuitis |Z,, =R + /[a)L - %j
(0]
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Driven RCLs: phasor notation

T — |
= The complex current can be written as c
V. (t) Ve (~)
i) = % - 0—1 N k
ot R+ /[a)L - j
oC :
= This can be written as: S
iot it it
1(t) = Voe— = Ve = Z*tot = Voe—Z|:R - /(CUL - Lj:| - /oem{e?w
Ztat ZtotZ tot R? + (w[ _ 1) oC
oC

0 \/ 2
R* + [a}[ - ]
Remembering that e" = cos@ —/sing = oC

Dependence of ¢ from

o(w)
1
0.5¢
500 1goo 1500 2000
Q)
-0.5
, ; T
-1t tad = o
‘ 9¢ R oRC|
-1.5 ~ i .
NB: /(t) =1,e""e™"
— high w: | lags voltage by 90°
— low w: | leads voltage by 90°
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AC motor (H26)

Coil 1
= 2 RL circuits driven by 60 Hz AC voltage
= Coil 1: R=2.3 Q, L=1.5mH
s Coil 2: R=2.5Q, L=31 mH
= What is the Ad between the 2 currents? Coil 2

s Z,=R,+iol,=2.3+i 377 1.5 103
s Z,=R,+iolL,=2.5+i 377 31 103
-> Ap=64 degrees

= The difference in phase will create a rotating B field -
Eddie currents in the metal can will make it rotate!
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Dependence of |, from o

V.
Iy 0.2 I,= 2 -
1
R’ +| ol ———
oC
0.15 1
Maximum current when ol = —
wC
0.1
resonance frequency
0.05
"""""" 50
()]
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RCL resonance (Demo L8)

= RCL circuit driven with variable frequency o

C
s L=50 mH {\J\J R scope
. C=0.3 uF I
L
T

= Measure V; on scope and tune frequency to maximize Vg

= What is the expect resonance frequency?

a)O=L=8.2 x 10° = v=1.3 kHz

N

G. Sciolla — MIT 8.022 — Lecture 17 27

Demo L8: part 2

= Same RCL circuit driven with variable frequency o

= Frequency is driven by a voltage V,, ‘ \

A C
= =50 mH \ , R scope
L

= Display V vs on the scope while sweeplng Vin
= What do you expect to see?

' w,=1.3kHz
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Resonant RCL with light bulb (L6)

I
= RCL circuit driven by AC voltage
= C can be adjusted using set of switches

= L can be adjusted moving the Fe core
inside a solenoid

= For each setting of C we can find an L that turn on the

light bulb
= What is that L? /- 1
Co*
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Summary and outlook
I

= Today:

= Undriven RCL circuits

= Energy stored and quality factor in weak damping limit
= Driven RCL AC circuits

= Simple solution when introducing complex impedance Z

Z,=R
Z. = 1/(iaC)
Z, =ioL

= Next Tuesday:

= More on driven RCLs: power, resonances, filters...
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