8.022 (E&M) — Lecture 19
I
Topics:

= Displacement current: what it is, why it's useful

= The complete Maxwell’'s equations

= And their solution in vacuum: EM waves

Maxwell’'s equations so far
I

drzp < Gauss’s law: relates E and charge density (p)

<i
my
Il

0 < Magnetic field lines are always closed!

10B
= ———— <& Faraday’s law: change in B flux creates e.m.f. (E)

<!
[os]]
Il

<!
my

X

« B 4_” J < Ampere’s law: relates B and its sources (J)
c

<

Is this set of equations completely consistent?
Not quite...
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Maxwell’'s equations so far (2)

UxB-3773
C

= Is this set of equations consistent? Not quite...
= Take the divergence of Ampere’s law
. ﬁ-( Ax 5] ArGgo_dmop (using continuity equation)
c c c ot
B V.WxB=0 (VeVxVis ALWAYS 0l)
Ampere’s law works only when dp/dt=0 which works in most cases but
not always: Ampere’s law is incomplete!
G. Sciolla —= MIT 8.022 — Lecture 19 3

Fixing the inconsistency
I

= Since V.V xV =0 we need to add some term to the right hand side
to that its divergence will be identically O

= Generalized Ampere’s law: V x B = 4_”5 +F
. . . C
= What is F? We know that its divergence must be =0:

\?.(4: i+ ﬁj =0 V(oF) = 4297 = 47 2

= |V+(cF) = 47r£;—p Similar to Gauss's law!

= Take time derivative of Gauss’s law:
i(?-E) YN 2(?-E): v %E |2 V+(cF) time and space derivatives commute
ot ot ot
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Displacement currents

I
= Generalized Ampere’s equation VxB =4—”5+1§
C C
. . . = A - -
= This can also be written as: VxB =T”(J +J,)
1 6E

= With J, = displacement current (density): jd =——
4 ot

= What is the J,?

= Not a real current: does not describe charges flowing through
some region

= But it acts like a real current: whenever we have changing E
field, we can treat its effect as if due to as a real current J,
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What is a displacement current?
I

= Consider a current flowing in a circuit and charging a capacitor C

= Standard integral Ampere's law: § B0/ = 40—”/5,70/ = 40—”]5 Jeda
= Let’s choose the path C and the surface S as in the drawing above:
= It all makes sense!
= Now choose the same path C but the surface S’ (ok by Stokes...)
= No standard current J through the surface (no charge crosses C!)
= But there is a flux of displacement current J, through the plates!
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What is a displacement current? (2)
I

= We can use the generalized Ampere’s Law:

- - 4
ch-d/ :Tﬂ(l”" +1,)

= - o .
1] € a1 0 fugyo 120

with 7, = [ J,eda =—] = E+dd =
s 4z s ot 4z Ot s 4r ot
= The displacement current is related to the change over time of the
flux of the electric field.
= In the example above, the electric field E is the one produced in between
the plates of the capacitor C E

. H—> |-
¢ _
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What is a displacement current? (3)
I

» The electric field E:
= Points in the same direction of the current (+Xx)
= At agiven instant in time: £ zﬂ;
A

= The flux of E will then be: @, =47zQ (yes, Gauss's law!)

o . 0D, oQ
= The rate of the change if this flux is: —=*= 471524”/

= Where | is the current that is charging the capacitor

= Comparing this with results in the previous page:
ly =], Jedd = J,-da=1

- generalized Ampere’s Law is valid no matter what surface we use
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The importance of

displacement currents
I

= When we examined the following circuit:

we said the same current | was flowing in each circuit element.
= How is it possible? No current flows through the plates of a capacitor!

= Displacement currents fix this inconsistency!
= Displacement current “continues” the “real” current across the capacitors
ensuring the validity of Kirchoff's laws.
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Maxwell's equations (complete!)
I |

.o vV.E=L
VeE =4rp cgs VeE= £,
V-B=0 VB =0
S — Typo in Purcell

VxE:-l% §x|§=—@ Eq15ch9

c ot ) ot
- - 4r - 10E L . OE
VxB=—J+—— - =

c Cc ot VxB=pu,d+ ue, P

\ Generalized Ampere’s law /

NB: when Maxwell introduced the term dE/dt in the generalized
Ampere’s law, his arguments were based purely on symmetry

= Yes, he was a theorist!
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Maxwell's equations: integral form

I
D, = L E.dd =47Q,,, (Gauss's law)
=0 (Magnetic field line are closed)
D 100
emf =@ Eedl = ———2E Faraday's law
<£> —— ( y's law)
- - 4z - - . ,
<ﬁB-dI =—(+1,) (Generalized Ampere's law)
c

where the currents Tand 1, are defined as TzL J.da and
j= L 0%:06)

“ 4 ot
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3 good reasons to remember

Maxwell’s equations
I

1) They compactly and beautifully summarize all the E&M we learned so far!

2) You will see them on T shirts for the rest of your life at MIT:
better to get familiar with them ASAP!

3) On the first day of 8.03 next semester you will be asked to write them
down on a piece of paper to check what you learned in your first semester
at MIT: save your honor (and mine)
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Displacement current: application
I

= Consider the following RC circuit:
= As C charges up, I, flows
= |, induces B inside the plates c —— R
= Assuming cylindrical plates of radius a
= Calculate B inside the plates
4zQ (1)
ya 2

s

1) Find E(t): E(t) = 4z0 = %

- 1 0E 1 0E(r) _ 1 0Q(t) _ 1(2)

- 2 2

2) Displ. current density: Jy = 4z of 4r ot a ot a

3) Remember that /(¢) = |/—"e‘”“
R s 5 Arop o< -
4) Magnetic field inside the plate (Ampere's law): @5'0' = TL Jyeda
c

2rV, /e
ca’R 13
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Maxwell equations in vacuum
I

= What happens when we write Maxwell’s equations in vacuum?
= Vacuum: no sources, p=0 and J=0

V+E = 4zp VeE=0
VB =0 VeB=0
UxE__10B 2 JxE--1%8
c ot c ot
- - = - = 10E
VXB:A'_” +£E VxB=——
c c ot c ot

m Except for a — sign, these equations are exquisitely symmetric!

= Consequence: an electric filed E varying in time will create a magnetic
filed B; a B varying in time creates a E: E and B are intimately related!
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Maxwell equations in vacuum:

solution
I
= How to solve these equations? V-E=0 (1)
= Uncouple them! VB =0 (2)
= Separate E and B in equations E
= How? V xE :__8_ (3)
= Take the curl of equations (3) and (4) c ﬂ&t
= Use other equations as needed VxB = l(’;_t (4)
c

= Start from (3):
Left: Vx(VxE)=V(V-E)-V’E=-V’E (since V+E =0 in vacuum)

. - 108 10 = 1 0°E , .
Right: V -———|=—==—VxB=-———— (usin 4
J X[ c ] cot c? ot? (using (4)

15

= |V?E = -
c° ot

IN)

Maxwell equations in vacuum:

solution
I o
. - - 10E
= Now repeat the procedure starting from V xB = _8_ (4)
c ot
Left: Vx(VxB)=V(V-B)-V’B=-V’B (since V+B =0 in vacuum)
: - (10E) 10 o = 10°B , .
Right: Vx| —— |==—VxE=-— using (3
J [cat] c ot czatz( 9(3)
=
= |vp=2 22
c” ot
m This is a special case of a known equation: the wave equation:
- 10°f
V2f ==~ —|wheref = f(x£vt
v? ot? ( )

where f is any function that has well-behaved derivatives
NB: we are restricting ourselves to the 1D case; extension to 3D next lecture
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Solution of wave equation: prove
I

» Prove that f = f(x£vt) is a solution of the wave equation
= Just calculate time and space derivatives.

= Keep in mind that V2 = 6_22+6_22+8_22
= Define U=x*vt o oo

of (xxvt) of of of  o*f(xxvt) ,0°f
- ity = - =v—
ot ou ot ou ot ou
of (xtvt) _of of _of o’ f(xxtvt) o°f
OX ou ox ou ot? ou?

. . orf 1 ,0°f
Plug the above results into the equation = —=—Vv >
ou v ou

= identity!
= As we wanted to prove!
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Wave equation solution
I

» What is a function suchas f = f(x-vt) 2 %)
= Assume v=1 cm/s

t=0

= At time t=0:
= Position of the max: x,

s Attimet=1s:
= The peak still occurs when the argument of f is x,
= But since the time is not 0
-> the function will be shifted in x by “vt”=1 cm
= Position of the max: x,=x,+1

x)

X, = Xg+1

| = f(x=Vt) represents a wave traveling in the -+x direction with velocity v |
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Wave equation solution

» What is a function such as f = f(x+vt) 7
= Assume v=1 cm/s

x)

= At time t=0:

= Position of the max: x,

= Attime t=1s:
= The peak still occurs when the argument of f is x,
= But since the time is not 0

—> the function will be shifted in x by “vt”’=1 cm
= Position of the max: x;=x,-1

t=1

X;= Xg-1

| f = f(x+vt) represents a wave traveling in the -x direction with velocity v
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EM waves

2
= Wave equation: V?f :iza 2f
ve ot
= Solution: f = f(xxvt)

= Any function of argument X & Vi

= These solution represent waves traveling with velocity v
= X —VIl represents a wave traveling in the +x direction
= X+ VL represents a wave traveling in the —x direction

= 1 0°f
, P 2¢ _
= Maxwell's equation: V°f = o
= Same equation! Only difference: v=c
= Solution: EM waves traveling with speed of light

- The light IS an EM wave!!!
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EM waves in Sl

This same result looks much more interesting in SI.
Maxwell’s equations in Sl:
o f
ot
where g, is the permittivity of free space
and p, is the permeability of free space
Maxwell's equations tell us what the velocity of an EM wave is:

V2 = w8,

v=1/ue,
g, and p, can be measured - we can predict velocity of EM waves:
@ = 8.85418 x 107 Coulomb? Newton ! meter—?2
o = 4% 10~ Newton sec? Cloulomb—2

- v=2.998 108 m/s? which is the speed of light!
Maxwell was the first to realize that E&M equations were leading to a wave
equation that was propagating at the speed of light: light is an EM wave!
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How to measure ¢ (demo A4)

Experimental setup: a neon laser beam is sent into a beam splitter.
Part of it is reflected and part of it is refracted first and then reflected
by a mirror.

« Difference in path between the 2 beams:

laser ~ 17.15 m x 2 = 34.3 meters
* Measure the delay of channel 2 wrt channel 1
on the scope: 116 ns
2> v=34.3m/ 116 ns = 2.96 108 m/s

Beam splitter (1

Ch 1: longer path

Ch 2: shorter path

Mirror

22
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Summary and outlook
I

= Today:
= Complete Maxwell’'s equations
= The missing term leads to displacement currents
= Solution of Maxwell's equations in vacuum

=« Wave equation - light is an EM radiation

= Next time:
= Properties of EM radiation
» Polarization and scattering of light
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