
Topics: 

� 

� 

� 

� 

8.022 (E&M) – Lecture 19 

The missing term in Maxwell’s equation 

Displacement current: what it is, why it’s useful 

The complete Maxwell’s equations 

And their solution in vacuum: EM waves 

Maxwell’s equations so far 

G G
⎧∇ iE = 4πρ Å Gauss’s law: relates E and charge density (ρ)
⎪ G G  
⎪∇ iB = 0 Å Magnetic field lines are always closed! 
⎪ G  G  1 ∂B⎨∇ ×  E =  −  Å Faraday’s law: change in B flux creates e.m.f. (E) 
⎪ c t∂ 
⎪ G  G  4π G 
⎪∇ ×  B = J Å Ampere’s law: relates B and its sources (J) 
⎩ c 

Is this set of equations completely consistent? 
Not quite… 
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Maxwell’s equations so far (2) 
G G 


⎧∇ iE = 4πρ

⎪ G G 

⎪∇ iB = 0

⎪ G  G  1 ∂B⎨∇ × E = −
⎪ c t∂

⎪ G  G  4π G

⎪∇ × B = J

⎩ c 

� Is this set of equations consistent? Not quite… 
� Take the divergence of Ampere’s law 

G ⎛ 4π G ⎞ 4π G G  4π  ρ∂
∇ i⎜ J ⎟ = ∇ iJ = − (using continuity equation) � 

⎝ c ⎠ c c ∂t 
G G  G  G G G 

� ∇ ∇ ×  B = 0 (∇ ∇ ×  v  is ALWAYS 0!)i i 
Ampere’s law works only when dρ/dt=0 which works in most cases but 

not always: Ampere’s law is incomplete! 
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Fixing the inconsistency 
� Since 

� 

� 

� 

0v∇ ∇×  ≡
G

i 

4π
∇ × = + 
G G 

B J F 
c 

4 0 ( ) 4 4 

( ) 4

π ρπ π 

ρπ 

∂⎛ ⎞∇ + = = − ∇ =⎜ ⎟ ∂⎝ ⎠ 

∂
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∂ 

G G G 
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i 

J F J 
c t 

cF 
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ρπ 
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c t  
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        we need to add some term to the right hand side 
to that its divergence will be identically 0 

Generalized Ampere’s law: 

What is F? We know that its divergence must be =0: 

Take time derivative of Gauss’s law: 

G  G  

 Similar to Gauss's law! 

⇒  ∇  
G  G  G G  

cF  

 time and space derivatives commute cF  
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Displacement currents 

� Generalized Ampere’s equation 

� This can also be written as: 

� With Jd = displacement current (density): 

� What is the Jd? 
� Not a real current: does not describe charges flowing through 

some region 

� But it acts like a real current: whenever we have changing E 
field, we can treat its effect as if due to as a real current Jd 

4 1π ∂
∇×  =  +  

∂ 

GG G G EB J 
c c t 

4 ( )π
∇×  =  +  
G G G G 

dB J J  
c 

1 
4π 

∂ 
= 

∂ 

GG 
d 

EJ 
t 
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What is a displacement current? 

� Consider a current flowing in a circuit and charging a capacitor C 

� Standard integral Ampere’s law: 
� Let’s choose the path C and the surface S as in the drawing above: 

� It all makes sense! 
� Now choose the same path C but the surface S’ (ok by Stokes…) 

� No standard current J through the surface (no charge crosses C!) 
� But there is a flux of displacement current Jd through the plates! 

4 4 
encl S 

C 

B dl  I  J  da  
c c 
π π 

= =∫ ∫ 
GG G G

i iv 

CC

S’ 
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What is a displacement current? (2) 

� 

� 

� 

the plates of the capacitor C 

C 

S’ 

( ) 

' ' ' 

4 

1 1 1 
4 4 4 

encl d 
C 

E 
d dS S S 

I I 
c 

EI da a 
t t t 

π 

π π π 

= + 

∂Φ∂ ∂ 
= = = = 

∂ ∂ ∂ 

∫ 

∫ ∫ ∫ 
G 

GG 
i 

GG GG G G
i i i 

v 

E 
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We can use the generalized Ampere’s Law: 

The displacement current is related to the change over time of the 
flux of the electric field. 

In the example above, the electric field E is the one produced in between 

with 

B dl  

J da E d
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What is a displacement current? (3) 

� 

� 

� 

� 

� 

� 

� 

Æ 

4 ˆQE x
A 
π 

= 
G 

4
E 

QπΦ =G 

4E Q I 
t t 

π π
∂Φ ∂ 

= 
∂ ∂ 

G 

'd dS S 
I a a I= = =∫ ∫ 

G GG G
i i 
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The electric field E: 
Points in the same direction of the current (+x) 
At a given instant in time: 

The flux of E will then be: 

The rate of the change if this flux is: 
Where I is the current that is charging the capacitor 

Comparing this with results in the previous page: 

generalized Ampere’s Law is valid no matter what surface we use 

 (yes, Gauss's law!) 

=4  

J  d J  d

4
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The importance of 
displacement currents 

� 

� 

� 

� 

laws. 
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When we examined the following circuit: 

we said the same current I was flowing in each circuit element. 
How is it possible? No current flows through the plates of a capacitor! 

Displacement currents fix this inconsistency! 
Displacement current “continues” the “real” current across the capacitors 
ensuring the validity of Kirchoff’s 
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Maxwell’s equations (complete!) 

� Yes, he was a theorist! 

4 
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NB: when Maxwell introduced the term dE/dt in the generalized 
Ampere’s law, his arguments were based purely on symmetry 

=  −  

Generalized Ampere’s law 

=  −  

G G 

G  G  
Typo in Purcell 

Eq 15 ch 9 
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Maxwell’s equations: integral form 
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Gauss's law

Magnetic field line are clo 

(Faraday's law= −  

E da  

emf E dl 

where the curren ts I and I  are defined as I=  and 

Generalized Ampere's law

3 good reasons to remember 
Maxwell’s equations 

1) They compactly and beautifully summarize all the E&M we learned so far! 

2) You will see them on T shirts for the rest of your life at MIT: 
better to get familiar with them ASAP! 

3) On the first day of 8.03 next semester you will be asked to write them 
down on a piece of paper to check what you learned in your first semester 
at MIT: save your honor (and mine) 

G. Sciolla – MIT 8.022 – Lecture 19 12 

6 



13 

Displacement current: application 

� 

� d 

� Id induces B inside the plates 

� Assuming cylindrical pl

� Calculate B inside the plates 

/ 

i

i l

i ield  i i l  l
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I t  e

R 
−= 

G 
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4
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Consider the following RC circuit: 
As C charges up, I flows 

ates of radius a 

1) F nd E(t): 

2) D sp . current density: 

3) Remember that  (  )  

4) Magnet c f ns de the p ate (Am pere's aw ): 

t RC  

(  )  

(  )  (  )  (  )  E  t  Q  t  I  t  

B dl  J  d

( ) t RC  

ca R 

Maxwell equations in vacuum 
� What happens when we write Maxwell’s equations in vacuum? 

� Vacuum: no sources, ρ=0 and J=0 
G G  G G 

⎧∇ iE = 4πρ ⎧∇ iE = 0 
⎪ G G  ⎪ G G 

⎪∇ iB = 0 ⎪∇ iB = 0


⎪ G  G 
⎪ G  G  
=  −  

1 ∂B 
G 

Æ ⎨∇ ×  E =  −  
1 ∂B 

G

⎨∇ ×  E
⎪ c t ⎪ c t  
⎪ G  G  4π G 

∂ 

1 ∂E 
G ⎪ G  G  1 ∂E 

G∂ 

⎪∇ ×  B = J +	 ⎪∇ ×  B =
∂⎩ c c ∂t ⎩ c t

�	 Except for a – sign, these equations are exquisitely symmetric! 
�	 Consequence: an electric filed E varying in time will create a magnetic 

filed B; a B varying in time creates a E: E and B are intimately related! 
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Maxwell equations in vacuum: 
solution 

� 

� 

� 

� How? 
� 

� 

� 

0 (1) 

0  (2) 

1 (3) 

1 (4) 
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How to solve these equations? 
Uncouple them! 

Separate E and B in equations 

Take the curl of equations (3) and (4) 
Use other equations as needed 

Start from (3): 

G  G  

G  G  

Left:   since 0 in vacuum

Right: using 

∇ ×  ∇ ×  = ∇  ∇  − ∇  −∇  

∇ ×  −  

G  G  G G G  G G  
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Maxwell equations in vacuum: 
solution 

� Now repeat the procedure starting from 

� 

1 (4)∂
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This is a special case of a known equation: the wave equation: 

where f is any function that has well-behaved derivatives 
NB: we are restricting ourselves to the 1D case; extension to 3D next lecture 

Left:   since 0 in vacuum

Right: using 

∇ ×  ∇ ×  = ∇  ∇  − ∇  −∇  
G  G  G G G  G G  

G  G  

where vt  
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Solution of wave equation: prove 
� Prove that 
� 

� 

� Define 

� As we wanted to prove! 

2 2 
2 

2 2 

2 2 

2 2 

2 2 
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2 2 2 
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is a solution of the wave equation 
Just calculate time and space derivatives. 

Keep in mind that 

Plug the above results into the equation identity! 

∂  ∂  

∂  ∂  

∂  ∂  

∂  ∂  

vt  f  f  vt  

vt  f  f  vt  

vt  

vt  
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Wave equation solution 
� ? 

� 

� At time t=0: 
� 0 

� At time t=1 s: 
� 0 

� 

Æ 

� 1=x0+1 

represents a wave travel

( )= −f f x  

x0 

f(x) 

f(x) 

x1= x0+1 

( )= −f f x  

2 
2 

2 2 

1 ∂
∇ = 

∂ 

G ff 
v t 
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What is a function such as 
Assume v=1 cm/s 

Position of the max: x

The peak still occurs when the argument of f is x
But since the time is not 0 

the function will be shifted in x by “vt”=1 cm 
Position of the max: x

ing in the +x direction with velocity v 

vt  

vt  
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Wave equation solution 
� ? 

� 

� At time t=0: 
� 0 

� At time t=1 s: 
� 0 

� 

Æ 

� 1=x0-1 

( )= +f f x  

x0 

f(x) 

f(x) 

x1= x0-1 

( )= +f f x  

2 
2 

2 2 

1 ∂
∇ = 

∂ 

G ff 
v t 

t=1 

t=0 
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What is a function such as 
Assume v=1 cm/s 

Position of the max: x

The peak still occurs when the argument of f is x
But since the time is not 0 

the function will be shifted in x by “vt”=1 cm 
Position of the max: x

represents a wave traveling in the -x direction with velocity v  

vt  

vt  
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EM waves 

� 

� Solution: 
� 

� 

� +x 
� –x 

� 

� 

� 

Æ 

( )= ±f f x  

2 
2 

2 2 

1 ∂
∇ = 

∂ 

G ff 
v t 

±x vt  

−x vt 
+x vt  

2 
2 

2 2 

1 ∂
∇ = 

∂ 

G ff 
c t 
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Wave equation:                

Any function of argument 
These solution represent waves traveling with velocity v 

represents a wave traveling in the direction 
represents a wave traveling in the direction 

Maxwell’s equation: 

Same equation! Only difference: v=c 
Solution: EM waves traveling with speed of light 

The light IS an EM wave!!! 

vt  
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EM waves in SI 
� 

� 

where ε0 i
and µ0 

� 

� ε0 and µ0 Æ 

Æ 8 m/s2 

� 

2 
2 

2µ ε0 0  

∂
∇ = 

∂ 

G ff 
t 

1 /  µ ε0 0 =v 
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This same result looks much more interesting in SI. 
Maxwell’s equations in SI:                    

is the permittiv ty of free space 
is the permeability of free space 

Maxwell’s equations tell us what the velocity of an EM wave is: 

can be measured we can predict velocity of EM waves: 

v=2.998 10 which is the speed of light! 
Maxwell was the first to realize that E&M equations were leading to a wave 
equation that was propagating at the speed of light: light is an EM wave!  
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� 

by a mirror. 

How to measure c (demo A4) 

laser 
Ch2 Ch1 

Mirror 

Æ 8 m/s 

Ch 1: longer path 

Experimental setup: a neon laser beam is sent into a beam splitter. 
Part of it is reflected and part of it is refracted first and then reflected 

Beam splitter 

• Difference in path between the 2 beams: 
~ 17.15 m x 2 = 34.3 meters 
• Measure the delay of channel 2 wrt channel 1 
on the scope: 116 ns 

v=34.3 m / 116 ns = 2.96 10

Ch 2: shorter path 
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Summary and outlook 

� Today: 
� 

� 

� 

� Wave equation Æ 

� Next time: 
� Properties of EM radiation 
� 
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Complete Maxwell’s equations 

The missing term leads to displacement currents 

Solution of Maxwell’s equations in vacuum 

light is an EM radiation 

Polarization and scattering of light 
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