

Maxwell's equations: integral form

$\left\{\Phi_{\vec{E}}=\int_{S}\vec{E}\cdot d\vec{a}=4\pi Q_{enc}\right\}$	(Gauss's law)	
$\Phi_{\vec{B}}=0$	(Magnetic field line are closed)	
$\begin{cases} \Phi_{\vec{E}} = \int_{S} \vec{E} \cdot d\vec{a} = 4\pi Q_{enc} \\ \Phi_{\vec{B}} = 0 \\ emf = \oint_{C} \vec{E} \cdot d\vec{l} = -\frac{1}{c} \frac{\partial \Phi_{\vec{B}}}{\partial t} \\ \oint_{C} \vec{B} \cdot d\vec{l} = \frac{4\pi}{c} (\vec{I} + \vec{I}_{d}) \end{cases}$	(Faraday's law)	
$\oint_C \vec{B} \cdot d\vec{l} = \frac{4\pi}{c} (\vec{I} + \vec{I}_d)$	(Generalized Ampere's law)	
where the currents \vec{I} and \vec{I}_{d} are defined as $\vec{I} = \int_{S} \vec{J} \cdot d\vec{a}$ and		
$\vec{\mathrm{I}}_{\mathrm{d}} = \frac{1}{4\pi} \frac{\partial \Phi_{\vec{E}}(S)}{\partial t}$		
G. Sciolla – MIT	3.022 – Lecture 19	11

