8.022 (E&M) — Lecture 3

[
Topics:

= Electric potential
= Energy associated with an electric field
= Gauss's law in differential form

... and a lot of vector calculus... (yes, again!)

Last time...
N

What did we learn?

1 A
Energy of a system of charges U :EZ z_

Electric field € - —+- @ ¢
q |r]

Gauss’s law in integral form:

® = ¢ _E-dA=47Q

encl

= Derived last time, but not rigorously...
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NB: Gauss'’s law only because
E~1/r2. If E ~ anything else,

GaUSS’S IaW the r2 would not cancel!!!

= Consider charge in a generic surface S

= Surround charge with spherical surface S;
concentric to charge

= Consider cone of solid angle dQ from
charge to surface S through the little sphere

= Electric flux through little sphere:

do,, = E-dA= (rq—zf)(rdeF) —qdQ

A
/
%

= Electric flux through surface S:
R’dQ
cosd

i) =qde " —gdo
cosé

do, = E-dA= (%f)-(

s dO=dDg, > O =dg,=41Q

® = _E-dA=47Q,,, is valid for ANY shape S.
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Confirmation of Gauss’s law
S

Electric field of spherical shell of charges:
Q

e —-f outside the shell
=9r

0 inside the shell
Can we verify this experimentally?

e Charge a spherical surface with
Van de Graaf generator
e Is it charged? (D7 and D8)
« Is Electric Field radial?
Does E~1/r?, eg: ¢~1/r?
Neon tube on only when oriented radially
(D24)
« (D29?)
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Confirmation of Gauss’s law (2)
I

= Cylindrical shell positively charged
= Gauus tells us that
" Elnsme =0

- Eoutsme >0

= Can we verify this experimentally?
= Demo D26

= Charge 2 conductive spheres by induction outside the cylinder: one
sphere will be + and the other will be -: it works because E g > 0

= Try to do the same inside inside cylinder - nothing happens because E=0

(explain induction on the board)
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Energy stored in E:
Squeezing charges...

[ |
B Consider a spherical shell of charge of radius r
A
B How much work dW to “squeeze” it to a radius r-dr? y
B Guess the pressure necessary to squeeze it:
p_F_QE_.Q___
A A A
Q. 1Q
Eoutside = F’ Einside =0 — Esurface = ErT
—->P=Eo= 1%0‘ = %(47#20) = 270"
2r 2r
® We can now calculate dW:

dW = Fdr = (PAYdr = (2z0?)(47r?)dr = 270%dV
(where dV = 47r?dr)

Remembering that E iy o = dW =—dV

created indr
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Energy stored in the electric field
I

2
m  Work done on the system: dW =E—dV
8z
®  We do work on the system (dW): same sign charges have been squeezed on a
smaller surface, closer together and they do not like that...
m  Where does the energy go?
m  We created electric field where there was none (between r and r-dr)
- The electric field we created must be storing the energy
m Energy is conserved - dU = dW

2
= |u =:— is the energy density of the electric field E
T
E2
. _ _ U= [ —av
m  Energy is stored in the E field: Entire 87
space

m NB: integrate over entire space not only where charges are!
m Example: charged sphere
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Electric potential difference

I
= Work to move g from r, to r,: de q
2 - 2 - 2 —
W, = L F,eds = —L Feoutoms ® S = —qjl E-ds
= W,, depends on the test charge q ®
- define a quantity that is independent of q Q >
and just describes the properties of the space:  n
4, = Wy _ J‘ = Electric potential difference
2 1 between P, and P,

= Physical interpretation:

¢,, is work that | must do to move a unit charge from P, to P,
= Units:

= Cgs: statvolts = erg/esu; Sl: Volt = N/C; 1 statvolts = “3” 10, V
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Electric potential
I
= The electric potential difference ¢,, is defined as the work to move a
unit charge between P, and P,: we need 2 points!

= Can we define similar concept describing the properties of the space?
= Yes, just fix one of the points (e.g.: P,=infinity):

#(F) = —J:E-d§ < Potential

= Application 1: Calculate ¢(r) created by a point charge in the origin:

#(F)=~[ Ewas — [ Lar-1

= Application 2: Calculate potential difference between points P, and P,:

r2 — . q q
b =~ " EedS =———=4¢(P,)-¢(F)
2 rl
- Potential difference is really the difference of potentials!
G. Sciolla —= MIT 8.022 — Lecture 3 9

Potentials of standard charge distributions
I

The potential created by a point charge is ¢(F) = %

-> Given this + superposition we can calculate anything!

N

= q;

= Potential of N point charges: g(r) = Z r—'
i=1

. dv
= Potential of charges in a volume V: (1) = IV P r
odA
= Potential of charges on a surface S: #(r) = L r
. . = Adl
= Potential of charges on a line L: (1) = R
r
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Some thoughts on potential
I

= Why is potential useful? Isn’'t E good enough?
= Potential is a scalar function - much easier to integrate than electric
field or force that are vector functions
= When is the potential defined?
= Unless you set your reference somehow, the potential has no meaning
= Usually we choose ¢(infinity)=0
= This does not work always: e.g.: potential created by a line of charges
= Careful: do not confuse potential ¢(x,y,z) with potential energy of a
system of charges (U) Lt g,
= Potential energy of a system of charges: U 25 Z#

work done to assemble charge configuration i
N

= Potential: work to move test charge from infinity to (x,y,z) ¢(F) = Z g9
i=1 ri
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Energy of electric field revisited
I

; . 1 i
= Energy stored in a system of charges: U :E Z_

= This can be rewritten as follows:

U =%Z%Zq—=%2qj¢(n—)

1
[ j=i
where ¢(r;) is the potential due to all charges excepted for the g; at
the location of q; ()
= Taking a continuum limit:

u=1 j pd(r)dV = j Eav

Volume Entire
with space
charges

NB: this works only when ¢(infinity)=0
G. Sciolla — MIT 8.022 — Lecture 3 12




Connection between ¢ and E
I

Consider potential difference between a point at r and r+dr:
dg=-["""E-ds ~ ~E(r)-dr

The infinitesimal change in potential can be written as:

Z—fdx+%dy+g—¢dz E[% 29 %jo(dx,dy,dz)sv¢odf

d = y 1
¢ oy z ox oy oz

E=-V¢

Useful info because it allows us to find E given ¢
= Good because ¢ is much easier to calculate than E
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Getting familiar with gradients...

I
1d problem: o .
Vi (x)=—X

OX

= The derivative df/dx describes the function’s slope

- The gradient describes the change of the function and the
direction of the change

2d problem: of (ﬂ QJ

of .
VI (X, y)s&x+5ys X'y

= The interpretation is the same, but in both directions
- The gradient points in the direction where the slope is deepest
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Visualization of gradients
I

Given the potential ¢(x,y)=sin(x)sin(y), calculate its gradient.
V (X, y) =cos(x)sin(y)X +sin xcos yy

A ——
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gr:ad ¢
The gradient always points uphill > E=-grad¢ points downhill

Visualization of gradients:

equipotential surfaces
I

Same potential ¢(x,y)=sin(x)sin(y)

NB: since equipotential lines are perpendicular to the gradient
—> equipotential lines are always perpendicular to E
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Divergence in E&M (1)
I

Consider flux of E through surface S: S,

Cut S into 2 surfaces: S, and S, with S, the little surface in between
®= 4}8 E.dA - qSSl—Slnew E.dA+ S$2-S2new E.dA
= E-dA-¢ _E-dA+ E-dA-f  E-dA
S1 Sinew S2 S2new
- @SlE.dA_d}Sz EedA=®, + D,
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Divergence Theorem

I
= Let’s continue splitting into smaller volumes
i=largeN i=largeN o i=largeN (J.) E'd'Eﬁ
_ _ . _ Si
R
=1 =1 =1 i
: . . E.dA
= If we define the divergence of E as VeE=lim<s——
V-0 \Y
largeN

S5 @= ZVi(V-E)aIVV-EdV
i=1

S I E’d)&=j V.Ed\ | Divergence Theorem
S \

(Gauss'’s Theorem)
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Gauss’s law in differential form
B

Simple application of the divergence theorem:
¢ E-dA=] V-Edv )
s v — j (V-E —47p)dV=0

SBS E.dA=47Q =4r jv odV v

This is valid for any surface V:

VeE =4np

Comments:
= First Maxwell's equations
= Given E, allows to easily extract charge distribution p
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What's a divergence?

I
= Consider infinitesimal cube centered at P=(x,y,z) 7 —
. . . z
= Flux of F through the cube in z direction: oP Ax
AD, = I FedA ~AxAY[F, (%, y, +£) -F,(x,y,z —E) Ay
top+bottom 2 2 ——
/ y
. X
= Since Az=>0
AD, = (AXAYAz) lim i[FZ(x, Y,z +£)— F,(xy,z —E)] = AxAyAz%
250 Az 2 2 oz
= Similarly for @, and @,
oF, oF,
AD, = AXAYyAz—* and AD, = AXAyAz—
ox ¥ EY,
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Divergence in cartesian coordinates

I
. _ B §, FedA
We defined divergence as v.F = lim<s——
V-0 V
But what does this really mean?
_ ¢, F-dA
VeF = lim=—=——
sV
Az—0
oF
AxAyAz(ﬁFX +—2+ aFZ)
I ox oy oz
=1m
ﬁ;jg AXAYAz
Az—0
_OF R R This is the usable expression for the
ox oy oz divergence: easy to calculate!
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Application of Gauss’s law in

differential form
N

Problem: given the electric field E(r), calculate the charge
distribution that created it

E(r)Z%ﬂKI’f forr<R and E(r)= 4:2K R forr>R
r
Hint: what connects E and p? Gauss’s law.
<ﬁs E.dA=47Q,, (integral form)
| VeE=dnp (differential form) |

In cartesian coordinates:

. - CE OE OE 47K when r<R - Sphere of radius
VeE=—x4 L=,.= R with constant
0 when r>R

+ =
ox oy oz charge density K
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Next time...
[ .

= Laplace and Poisson equations
= Curl and its use in Electrostatics
= Into to conductors (?)
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