
Topics: 

� 

� Energy associated with an electric field 

� 

in!) 

8.022 (E&M) – Lecture 3 

Electric potential 

Gauss’s law in differential form 

… and a lot of vector calculus… (yes, aga
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Last time… 

What did we learn? 

� Energy of a system of charges 

� 

� 
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Electric field 

Gauss’s law in integral form: 

Derived last time, but not rigorously… 

encl 

1




3 

Gauss’s law 
� 

� 1 

� solid angle dΩ from 

� 

� 

� dΦS=dΦS1 Æ ΦS =ΦS1=4πQ 
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NB: 
E~1/r2

the r2 would not cancel!!! 
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Consider charge in a generic surface S 
Surround charge with spherical surface S
concentric to charge 
Consider cone of 
charge to surface S through the little sphere 
Electric flux through little sphere: 

Electric flux through surface S: 

 is valid for ANY shape S. encl E dA  

E dA r r  d r  

cos cos 
R  d  r  n  E dA 

Gauss’s law only because 
. If E ~ anything else, 
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Confirmation of Gauss’s law 
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Electric field of spherical shell of charges:  

Can we verify this experimentally? 

  o  u ts id e  th e  s h e ll  

in s id e  th e  s h e ll  

• Charge a spherical surface with 
Van de Graaf generator 

• Is it charged? (D7 and D8) 
• Is Electric Field radial? 

, eg: 
Neon tube on only when oriented radially 

• (D29?) 
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Confirmation of Gauss’s law (2) 

� ll positi
� 

� E = 0 
� E > 0 

� 

� Demo D26 
� i  i i i

l > 0 
� Æ 

i

+ + + E>0 

E=0 
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Cylindrical she vely charged 
Gauus tells us that 

inside 

outside 

Can we verify this experimentally? 

Charge 2 conduct ve spheres by nduct on outside the cyl nder: one 
sphere wil  be + and the other will be -: it works because Eoutside 

Try to do the same inside inside cylinder nothing happens because E=0 

(explain nduction on the board) 
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Energy stored in E: 

Squeezing charges… 

x 

y 
� 

� ius r-dr? 
� 

� 

( ) 

2 2 

2 2 
2 2 

1; 0 
2 

1 4 2 
2 2 

F QP E E
A A A 

Q QE E E 
r r 

QP E  r  
r r 

σ 

σσ σ π σ 

= = = = 

= = → = 

→ =  =  =  =  

2 2 2 

2 

( ) (2 )(4 ) 2 
4 ) 

dW Fdr r dr dV 
dV 

πσ π πσ 

π 

= = = = 

= 
2 

8 
EdW dVπσ 
π

⇒ = 

G. Sciolla – MIT 8.022 – Lecture 3 

Consider a spherical shell of charge of radius r 
How much work dW to “squeeze” it to a rad
Guess the pressure necessary to squeeze it: 

We can now calculate dW: 

outside inside surface 

QE  

πσ  

(where  
PA dr 

r dr 

created in dr Remembering that E =4 
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Energy stored in the electric field 
� Work done on the system: 

� 

� Where does the energy go? 
� 

Æ i i
� Æ 

� is the energy density of the electric field E 

� Energy is stored in the E field: 

� 

� 
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We do work on the system (dW): same sign charges have been squeezed on a 
smaller surface, closer together and they do not like that… 

We created electric field where there was none (between r and r-dr)   
The electr c field we created must be stor ng the energy 

Energy is conserved dU = dW 

NB: integrate over entire space not only where charges are! 
Example: charged sphere 

Entire 
space 

dV  
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Electric potential difference 

� 1 to r2: 

� W12 / 
Æ define a quantity that is independent of q 
and just describes the properti

� Physical interpretation: 
φ12 1 to P2 

� Units: 
� 2 V 

r1r2 
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JG Gi Electric potential difference 

between P1 and P2 
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Work to move q from r

depends on the test charge q 

es of the space: 

is work that I must do to move a unit charge from P

cgs: statvolts = erg/esu; SI: Volt = N/C; 1 statvolts = “3” 10

Coulomb  ds  ds  q  E  ds  

=  −

4
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Electric potential 
� φ12 

1 2: we need 2 points! 
� 

� 1

� Application 1: Calculate φ

� Application 2 1 and P2: 
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The electric potential difference is defined as the work to move a 
unit charge between P and P
Can we define similar concept describing the properties of the space? 

Yes, just fix one of the points (e.g.: P =infinity): 

(r) created by a point charge in the origin: 

: Calculate potential difference between points P

Potential difference is really the difference of potentials! 

   Potential E  ds  

E  ds  dr  

Potentials of standard charge distributions 
G rThe potential created by a point charge is φ ( )  = q 

r 
Æ Given this + superposition we can calculate anything! 

NG ir � Potential of N point charges: φ ( )  = ∑ q 
i =1 ri 

G ρ dV  r 

G σ dA  

� Potential of charges in a volume V: φ ( )  = ∫V r 

r � Potential of charges on a surface S:  φ ( )  = ∫S r


G λ dl 
r� Potential of charges on a line L:  φ ( )  = ∫L r 
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Some thoughts on potential 

� Why is potential useful? Isn’t E good enough? 

� Potential is a scalar function  Æ much easier to integrate than electric 


field or force that are vector functions 


� When is the potential defined? 

� Unless you set your reference somehow, the potential has no meaning


� Usually we choose φ(infinity)=0

� This does not work always: e.g.: potential created by a line of charges


� Careful: do not confuse potential φ(x,y,z) with potential energy of a

system of charges (U) 

1 i N  j N q q 
= = 
i j  

� Potential energy of a system of charges: U = ∑ ∑2 i=1 j=1 rijwork done to assemble charge configuration j i≠ 

NG ir� Potential: work to move test charge from infinity to (x,y,z) φ ( )  = ∑ q 
i =1 ri 
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Energy of electric field revisited 
� 

� 

where φ(rj j at 
the location of qj (rj) 

� Taking a continuum limit: 

φ(infinity)=0 
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Energy stored in a system of charges:  

This can be rewritten as follows: 

) is the potential due to all charges excepted for the q

NB: this works only when 

Volume Entire
  with space 
charges 
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φ 
� φ

Connection between φ and E 
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Consider potential difference between a point at r and r+dr: 

The infinitesimal change in potential can be written as:   

Useful info because it allows us to find E given 
Good because is much easier to calculate than E 

E d E r  d
JG  G  

x dy d
y  z  

φ  φ  φ  
≡ ∇  

1d problem: 

� 

Æ 

2d problem: 

� 

Æ 

Getting familiar with gradients… 
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The derivative df/dx describes the function’s slope 
The gradient describes the change of the function and the 
direction of the change 

The interpretation is the same, but in both directions 
The gradient points in the direction where the slope is deepest 

f  f  f x y  
x  y  
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Given the potential φ 

Visualization of gradients 

ˆ ˆ( , ) ) sin( )x y x x yyφ∇ = + 

grad φφ (x,y) 

Æ E=-gradφ points downhill 

(x,y)=sin(x)sin(y), calculate its  gradient. 
cos( sin cos y x  

The gradient always points uphill 

Same potential φ (x,y)=sin(x)sin(y) 

φ (x,y) 

Æ 
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Visualization of gradients: 

equipotential surfaces 

NB: since equipotential lines are perpendicular to the gradient 
equipotential lines are always perpendicular to E 
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Consider flux of E through surface S:  

Cut S into 2 surfaces: S e surface in between 

S  S n S  S  

S  n

E dA  E dA  E dA  

dA  E dA  E dA  E dA  

E dA  E dA  Φ + Φ  

Divergence Theorem 
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Let’s continue splitting into smaller volumes 

If we define the divergence of E as 

largeN largeN largeN 

E dA  Φ  =  

lim 

E dA  dV  
(Gauss’s Theorem) 

largeN 

EdV  
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Gauss’s law in differential form 

� First Maxwell’s equations 
� ρ 

( 4 )
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Simple application of the divergence theorem: 

This is valid for any surface V: 

Comments: 

Given E, allows to easily extract charge distribution 

= 0  
π  ρ  

What’s a divergence? 

� 

� 

� Since ∆zÆ0 

� Φx and Φy 
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Consider infinitesimal cube centered at P=(x,y,z) 

Flux of F through the cube in z direction: 

Similarly for 

p b

F dA  x y F x y z  F x y z  ∆Φ = ∆ ∆ 

lim  x y z  F x y z  F x y z  x y z  ∆Φ = ∆ ∆ ∆ ∆ ∆ ∆ 

 and x y  z  x y z  ∆Φ = ∆ ∆ ∆ Φ = ∆ ∆ ∆ 
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Divergence in cartesian coordinates 

mean? 
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divergence: easy to calculate! 
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We defined divergence as 

But what does this really 

lim 

lim 

lim 
x y  z  

x y  z  

∆ ∆ ∆  

∆ ∆ ∆  

This is the usable expression for the 

Application of Gauss’s law in 
differential form 

Problem
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: given the electric field E(r), calculate the charge 
distribution that created it 

R r  

? Gauss’s law. 

(integral form

differential form

In cartesian coordinates:   
 when r<R 

... 
0 when r>R 

Sphere of radius 
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Next time… 

� 

� 

� 
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Laplace and Poisson equations 
Curl and its use in Electrostatics 
Into to conductors (?) 
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