8.022 (E&M) — Lecture 4

I
Topics:
= More applications of vector calculus to electrostatics:

= Laplacian: Poisson and Laplace equation

= Curl: concept and applications to electrostatics

= Introduction to conductors

Last time...
[

. . [ . _
= Electric potential: ¢(F) = —I E.dS with E=-V¢
= Work done to move a unit charge from infinity to the point P(x,y,z)
« It's a scalar!

= Energy associated with an electric field:

= Work done to assemble system of charges is stored in E

U= [ pprav= | E v
2 Volume Entire 87[
with space
charges

= Gauss's law in differential form:  VeE = 47p
= Easy way to go from E to charge distribution that created it
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Laplacian operator
I

What if we combine gradient and divergence?
Let’s calculate the div grad f (Q: difference wrt grad div f ?)

0 af

vevf = (254294 Lo @ g Ly g
ox oy~ oz ox oy oz
2 2 2 2 2 2
:2 q.‘_gz a_2+6_2+a_2 fEVZf
ox® oy° oz ox° oy- oz

V?f =V.Vf| Laplacian Operator
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Interpretation of Laplacian
I

Given a 2d function ¢(x,y)=a(x2+y?)/4 calculate the Laplacian

y
S |/, Asthe second derivative, the Laplacian
e \1/ / gives the curvature of the function
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Poisson equation
I

Let’s apply the concept of Laplacian to electrostatics.
= Rewrite Gauss’s law in terms of the potential

—

VeE =4np
VeE =Ve(-V¢) = -V?$

— V?¢=—4mp Poisson Equation
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Laplace equation and Earnshaw’s Theorem

= What happens to Poisson’s equation in vacuum?

Vi¢=—-4rnp = |V’¢=0 Laplace Equation

=  What does this teach us?

In a region where ¢ satisfies Laplace’s equation, then its curvature

must be 0 everywhere in the region

- The potential has no local maxima or minima in that region

= Important consequence for physics:
Earnshaw’s Theorem:

It is impossible to hold a charge in stable equilibrium with

electrostatic fields (no minima)
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Application of Earnshaw’s Theorem

8 charges on a cube and one free in the middle.
Is the equilibrium stable? No!

(does the question sound familiar?)
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The circulation
N

= Consider the line integral of a vector function F over a closed path C:

C,
S
c, =

= Let's now cut C into 2 smaller loops: C, and C,
= Let's write the circulation C in terms of the integral on C, and C,

F=¢ Feds=¢ Feds+§ _Feds=

F:SB F.dS Circulation
C

§, Feds—§, Feds+§ Feds+q Feds

2‘15@ If-d§+<_f>cz Feods N




The curl of F

I
= |If we repeat the procedure N times: ,//—‘\\ C
i:lﬁg:eN /g gg O
I'= I,
=S NI
1 == /v

n Define the curl of F as circulation of F per unit area in the limit A>0

~ . Feds
curl FeA=lim—~*——
A0 A

where A is the area inside C

= The curl is a vector normal to the surface A with direction given by
the “right hand rule”
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Stokes Theorem

I
i=LargeN LargeN ~ LargeN (jSC- If'dg C
= > =) ¢ Feds=> AS—0
i-1 i1 i-1 A
q‘) |E°d§ i=LargeN
.. [ = A
In the limit A — 0: 'T—wurlF-n and Y. A—)jdA
i=1 A
LargeN - LargeN ~ LargeN . - ~
I'=> AcurlFei= > curl F(Af)= ) curl FeA —>L\cur| FedA
i=1 i-1 i1
= ¢ Feds (definition of circulation)

C

= c_f) Feds =_[ curl F«dA | Stokes Theorem
C A

NB: Stokes relates the line integral of a function F over a closed line C and the
surface integral of the curl of the function over the area enclosed by C
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Application of Stoke’s Theorem
I

= Stoke’s theorem:

qﬁc Feds = jAcurl F.dA

= The Electrostatics Force is conservative:
q; Feds =0
C

=3 L curl E«dA = 0 for any surface A

= curlE =0

= The curl of an electrostatic field is zero.
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Curl in cartesian coordinates (1)
I
= Consider infinitesimal rectangle in yz plane
centered at P=(x,y,z) in a vector filed F zZ|d Ay ¢
= Calculate circulation of F around the square: oP Az

= z OF,
Feds =F, (x, y,z—%)Ay {F (x,y, z)—}Ay a b

2 0

T
o

Fz(x,y+ z)Az—{F(x yz)+Ay5€;}Az y

'I'Ix

za
ya}

. ~ 6F
Adding the 4 components: = | ¢ Feds - — |AyAz
Z
squareYZ
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ds
F(xy, Z+—)( Ay)-—{F (%Y, 2)+ }
ds

!
!
fras-
i

F —Fz(x,y—Azy,z)(—Az)u[z




Curl in cartesian coordinates (2)

I
= Combining this result with definition of curl:
. ¢, Feds
curl Fen=lim=~*&—— E.ds
" _ oF
e 6FA = |(curl F), = lim —C’BSQZmA :(%_a_yj
- x> X Z
qs Feds = ok _H AYAz A0 y
square ay oz

= Similar results orienting the rectangles in // (xz) and (xy) planes ->

= (oF, OF ), (6F aFJA oF, oF ),
curl F=| —2—— |R+| X ——2 |y+]| —=———> |74
oy oz oz oXx ox oy

\%lQ) <>
2)|Q) N>
Il
<
X
TN

X
2
ox
FX

T
T

y z

‘ This is the usable expression for the curl: easy to calculate! 13

Summary of vector calculus in
electrostatics (1)

[

o 0 0

: . Vé=| —,—,—
= Gradient: ¢ (ax 2y 6zj¢

« INE&M: E =-V¢

_ oF,
= Divergence: V-F:@+—y+a':Z
ox oy oz

« Gauss's theorem: L E-dA = Iv V.EdV

= In E&M: Gauss’ law in differential form VeE = dmp

= Curl: curlF=vxF

= Stoke's theorem: qﬁc Feds = IAcurI F.dA

« INE&M: VxE=0
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Summary of vector calculus in

electrostatics (2)
I

= Laplacian: V?¢=V.V¢

= In E&M: )
= Poisson Equation: V@ =—4mp

. Laplace Equation: V’¢=0

=« Earnshaw’s theorem: impossible to hold a charge in stable equilibrium
with electrostatic fields (no local minima)

Comment:
This may look like a lot of math: it is!
Time and exercise will help you to learn how to use it in E&M

G. Sciolla — MIT 8.022 — Lecture 4 Purcell Chapter 2

Conductors and Insulators
N

Conductor: a material with free electrons
= Excellent conductors: metals such as Au, Ag, Cu, Al,...
= OK conductors: ionic solutions such as NaCl in H,0

e00000000000000 O . .
°
\ Free ® o o9
Au electrons ° o . cl
([ ) o . °
eocco00c000c000o0 .. .' ® .' Na*

Insulator: a material without free electrons
= Organic materials: rubber, plastic,...
= Inorganic materials: quartz, glass,...
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Electric Fields in Conductors (1)
I

B A conductor is assumed to have an infinite supply of electric charges
B Pretty good assumption...
B Inside a conductor, E=0

B Why? If E is not 0 - charges will move from where the potential is higher to where
the potential is lower; migration will stop only when E=0.

B How long does it take? 10°17-10°16 s (typical resistivity of metals)

E R E R Q/ﬂ
\
Y

— —

I —

> > L ]

e |
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Electric Fields in Conductors (2)
[

B Electric potential inside a conductor is constant
W Given 2 p%iznts inside the conductor P, and P, the A¢ would be:
Agp= J'Pl E-ds=0 since E=0 inside the conductor.

B Net charge can only reside on the surface
B |f net charge inside the conductor - Electric Field .ne.0 (Gauss’s law)

B External field lines are perpendicular to surface
B E// component would cause charge flow on the surface until Ap=0

B Conductor’s surface is an equipotential
W Because it's perpendicular to field lines
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Corollary 1

In a hollow region inside conductor, ¢=const and E=0 if there aren’t any
charges in the cavity

Why?
B Surface of conductor is equipotential

B If no charge inside the cavity - Laplace holds > ¢, cannot have max
or minima

- ¢ must be constant > E=0
Consequence:
B Shielding of external electric fields: Faraday’s cage
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Corollary 2

I
A charge +Q in the cavity will induce a charge +Q on the outside of the
conductor

Why?
B Apply Gauss's law to surface - - - inside the conductor

<j> E.dA =0 because E=0 inside a conductor
<j> E«dA =47(Q+Q,,,) Gauss's law

= Qe =Q =Qusice = Qusice =Q (conductor is overall neutral)
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Corollary 3
I

The induced charge density on the surface of a conductor
caused by a charge Q inside it iS 6, gyced=Esurface/ 4™

(¢
Why?
B For surface charge layer, Gauss tells us that AE=4nc
B Since Einside:0 2 Esurface:4n0induced
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Uniqueness theorem
I

Given the charge density p(x,y,z) in a region and the value of the electrostatic
potential ¢(x,y,z) on the boundaries, there is only one function ¢(x,y,z) which
describes the potential in that region.

Prove:
m  Assume there are 2 solutions: ¢, and ¢,; they will satisfy Poisson:

V24, (F) = 4zp(F)
V2, (7) = 47p(F)

= Both ¢, and ¢, satisfy boundary conditions: on the boundary, ¢;= ¢,=¢
= Superposition: any combination of ¢;and ¢, will be solution, including

b= 02702 G2y (7) 2V (7) - V4 (F) = dp(F) — dp(F) = O

m (), satisfies Laplace: no local maxima or minima inside the boundaries
= On the boundaries ¢;=0 = ¢;=0 everywhere inside region

2> ¢,= ¢, everywhere inside region Why do | care?
A solution is THE solution!

G. Sciolla — MIT 8.022 — Lecture 4

11



Uniqueness theorem: application 1
[ .

m A hollow conductor is charged until its external surface reaches a
potential (relative to infinity) ¢=d,.

What is the potential inside the cavity?

Solution

0=¢, everywhere inside the conductor’s surface, including the cavity.
Why? ¢=¢, satisfies boundary conditions and Laplace equation

- The uniqueness theorem tells me that is THE solution.
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Unigueness theorem: application 2
[

m  Two concentric thin conductive spherical shells or radii R1 and R2
carry charges Q, and Q, respectively.
= What is the potential of the outer sphere? (¢;iy,=0)
m What is the potential on the inner sphere?
m What at r=07?

Solution ' Q&

m Quter sphere: ¢,=(Q,+Q,)/R,
R1

® Inner sphere ¢, —¢ = —_|' Eeds =

R2
-2
R

2

[%a-2 2
r
R2
+& Because of uniqueness: ¢(r) = ¢,vr <R,

=4
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Next time...
[

= More on Conductors in Electrostatics
Capacitors

NB: All these topics are included in Quiz 1
scheduled for Tue October 5: just 2 weeks from now!!!

Reminders:
= Lab 1 is scheduled for Tomorrow 5-8 pm
= Pset 2 is due THIS Fri Sep 24
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