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8.022 (E&M) – Lecture 5

Topics:

More on conductors… and many demos!

Capacitors 
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Last time… 
Curl:

Stoke’s theorem: 

Laplacian:

Conductors
Materials with free electrons (e.g. metals) 
Properties: 

Inside a conductor E=0
Esurface=4πσ
Field lines perpendicular to the surface surface is equipotential 

Uniqueness Theorem
Given ρ(xyz) and boundary conditions, the solution φ(xyz) is unique

A
 = curl         0

C
F ds F dA E⇒ ∇× =∫ ∫

GG G GGi iv
 curl F F= ∇×

G G

2φ φ∇ ≡ ∇ ∇i
in vacuum2 2 4  (Poisson) 0 (Laplace)φ πρ φ∇ = − ⎯⎯⎯⎯→∇ =
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Charge distribution on a conductor
Let’s deposit a charge Q on a tear drop-shaped conductor
How will the charge distribute on the surface? Uniformly? 
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Experimental answer: NO! (Demo D28)
σtip >> σflat

Important consequence
Although φ=const, E=4πσ

Etip >> Eflat

Why? 
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Charge distribution on a conductor (2)
Qualitative explanation

Consider 2 spherical conductors connected by conductive wire 
Radii: R1 and R2 with R1 >> R2 

Deposit a charge Q on one of them 
charge redistributes itself until φ=constant 
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Conclusion:
Electric field is stronger where curvature (1/R) is larger 

More experimental evidence: D29 (Lightning with Van der Graaf)
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Shielding 

We proved that in a hollow region inside a conductor E=0

This is the principle of shielding
Do we need a solid conductor or would a mesh do? 

Demo D32 (Faraday’s cage in Van der Graaf)  
Is shielding perfect? 

E=0
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+

Consider field lines: 
Radial around the charge 
Perpendicular to the surface conductor 

The point charge +Q induces – charges on the conductor 

Application of Uniqueness Theorem:

Method of images  

+

- - - - - - - - -

What is the electric potential created by a point charge 
+Q at a distance y from an infinite conductive plane? 
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Method of images  
Apply the uniqueness theorem

It does not matter how you find the potential φ as long as the boundary 
conditions are satisfied. The solution is unique. 
In our case: on the conductor surface: φ=0 and always perpendicular

Can we find an easier configuration of charges that will create the 
same field lines above the conductor surface?

YES! 
For this system of point charges we 
can calculate  φ(x,y,z) anywhere
This is THE solution (uniqueness)
NB: we do not care what happens
below the surface of the conductor: 
that is nor the region under study  

+

- - - - - - - - -

-

+

- - - - - - - - -
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Capacitance 

+Q

+
+

+
+

+

-Q
--

-
-
-
-

+

What is the ∆φ between the 2?

Let’s try to calculate: 

Caveat: C is proportional to Q only if there is enough Q, uniformly spread…

2

2 1
1

(constant depending on geometry)V E ds Qφ φ≡ − = − = ×∫
G Gi

Consider 2 conductors at a certain distance 
Deposit charge +Q on one and –Q on the other

They are conductors
each surface is equipotential 

    Q CV⇒ =Naming the proportionality constant 1/C:
Definitions: 

C = capacitance of the system 
Capacitor: system of 2 oppositely charged conductors
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Units of capacitance
Definition of capacitance:

Units: 
SI:     Farad (F) = Coulomb/Volt 
cgs:   cm = esu/(esu/cm)
Conversion: 1 cm = 1.11 x 10-12 F ~ 1 pF

Remember:
1 Coulomb is a BIG charge: 1 F is a BIG capacitance
Usual C ~ pF-µF

         
V

Q CV QC= ⇒ =
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Simple capacitors:

Isolated Sphere 
Conductive sphere of radius R in (0,0,0) with a charge Q 

Review questions: 
Where is the charge located? 

Hollow sphere? Solid sphere? Why? 

What is the E everywhere in space?

Is this a capacitor? 
Yes! The second conductor is a virtual one: infinity
Calculate the capacitance: 

Capacitors are everywhere! 

/
      R

sphere

V Q R
C R

Q Q
φ φ∞= − =⎧

⇒ =⎨ =⎩

R Q
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The prototypical capacitor:

Parallel plates  
Physical configuration: 

2 parallel plates, each of area A, at a distance d
NB: if d2<<A ~ infinite parallel planes

Deposit +Q on top plate and –Q on bottom plate

Capacitance:

ˆ(4
 

) 4
     

4
 

bottom bottom

top top

QV E ds n dn d
A

Q Q

Q AC
V d

πσ π
π

⎧ ⎛ ⎞= = =⎪ ⎜ ⎟ ⇒ =⎝ ⎠⎨
⎪ =⎩

=∫ ∫
G G Gi i

+Q

d
-Q

E
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Parallel plates capacitor: discussion
Parallel plates capacitor: 

Observations: 
C depends only on the geometry of the arrangement

As it should, not on Q deposited or V between the plates!

Electric field on surface of conductor: 2πσ or 4πσ???

Infinite plane of charges: 2πσ
With σ=Q/A

Conductor surface: 4πσ
With σ=Q/2A

No contradiction if σ correctly defined!

What is the E outside the capacitor? Zero!

4
   Q AC

V dπ
= =

E=2πσ

+++++++++++++++++++++++++

+++++++++++++++++++++++++
+++++++++++++++++++++++++

E=2πσ

E=2πσ
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More review questions: 

E in Nested Spherical Shells 

Configuration: 
2 concentric spherical shells
Charge: +Q (–Q) on inner (outer) sphere

Calculate E in the following regions: 
r<R1, R1<r<R2, r>R2

E 1 enc

E 2 enc

E 1 2 enc

E

Gauss's law is the key. 
   on spherical surface with  r<R . Q =0  E=0 
   on spherical surface with  r>R . Q =+Q-Q=0  E=0 
   on spherical surface with  R <r<R . Q =+Q  E 0

(E ds E

• Φ ⇒
• Φ ⇒

• Φ ⇒ ≠

Φ = =∫
G Gi 2

Q ˆ4 ) 4      E=
r

r Q rπ π= ⇒
G

R2

R1

Q2

Q1
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More capacitors:

Nested Spherical Shells   
Same configuration: 

2 concentric spherical shells
Charge: +Q (–Q) on inner (outer) sphere

Capacitance:
Key: finding the potential difference V

If R2-R1=d<<R2 0

R1 R1

1 2 2
1 2R2

1

2

2

2 1R

   =  -    Q Q QV E ds d R RQCr
r R V RR R

φ φ= − = − − = ⇒ = =
−∫ ∫

G Gi

R2

R1

Q2

Q1

2 2
1 2 1 1

2 1

4 ~    same as plane capacitor!
4 4

sphereAR R R RC
R R d d d

π
π π

= = =
−
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Energy stored in a capacitor 
Consider a capacitor with charge +/-q 
How much work is needed to bring a positive charge dq from the 
negative plate to the positive plate? 

NB: we are charging the capacitor!

How much work is needed to charge the capacitor from scratch? 

Energy stored in the capacitor: 

Is this result consistent with what we found earlier? 
Example: parallel plate capacitor

+
+
+
+
+
+

-
-
-
-
-
-

+
( ) qdW V q dq dq

C
= =

2

0 0 2
Q Q q QW dW dq

C C
= = =∫ ∫

2
21

2 2
QU CV
C

= =

2 2
2 2 21 1 1 1     (4 ) (4 )

8 8 8 2 2
A Q d QU E dV E Ad Ad
A A C

πσ π
π π π

= = = = =∫
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Cylindrical Capacitor 
Concentric cylindrical shells with charge +/-Q. Calculate: 

Electric Field in between plates 

V between plates:

Capacitance C:

Calculate energy stored in capacitor:  

L

a

b

++++-
- - - - -

- - -
-r<a  and r>b: E=0 (Gauss)

ˆ2Qa<r<b: Gauss's law on cylinder of radius r: E(r)=
L

r
r

G

b b

a a

2Q 2QV= E dr= ln
L L

dr b
r a

=∫ ∫
G Gi

Q LC= =
V 2 ln b

a

2 2
21 1 L 2QU= CV = ln ln

2 2 L2 ln

b Q b
b a L a
a

⎛ ⎞ =⎜ ⎟
⎝ ⎠
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Next time… 

More on capacitors 

Charges in motion: currents 

Some help to get ready for quiz #1? 
Review of Electrostatics?    


