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8.022 Electricity and M agnetism
REVIEW OF CLASSICAL MECHANICS

(1) Kinematics

(a) Position vector, Description of the motion

We describe the pogition of a particle by specifying its coordinates with respect to aframe S, Sisredly
a point, which serves as the origin, i.e. the point with coordinates (0,0,0). Thus, for a Cartesan
coordinate system, a particle a a point P is described by three numbers, (x.y,z), the distances of P
from the origin dong the three axes. The vector from the origin to P is caled the position vector, 1, of
the particle. The position vector contains al the information regarding this particle. If we know r asa
function of time, then we know everything we aways wanted to know about this particle's future. Let
r=r(t) =x(t)X+y()y+z(t)z. Thenthevdocity, v(t), and the accderation, a(t) , of the particle at
timet are given by

V() =—T7 = %>‘<+ﬂ§/+%2 b |v()| = X2+ + 22

d
dt dt dt

2 2 2 2
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a(t) =—v
(t) a

(We usethenotation Ww° %N i.e. the dot indicates the derivative with respect to time)

Inverting the above eguations, we can get the pogition vector if we know the acceleration or the velocity
asafunction of time. So, assuming we know the velocity, v(t), asafunction of time,

r(t)=r(0)+ Qv(tQdt¢

If we know the acceleration, a(t) , then the velocity is given by
V(1) =V(0) + Qa(tg dt(

from which we can dso get the position as afunction of time:
F(t) = F(0) +V(O)t + )& At & dt it ¢




To summarize: we can get the pogition vector of a particle (if we know its velocity or accderation as a
function of time) by a ample integration, if we know the initid conditions, i.e. the velocity and postion
vector a some point in time (say t=0).



(b) Motion in a straight line

The above equations for the position vector can be gpplied to the case where the particle is moving in a
graight line. There are afew useful specid cases

(&) particle moving with congtant veocity in the vacuum (i.e. no friction)

r(t)=r, +vtwhere r_ istheinitid podtion of the paticle. In one-dimensona motion, say aong the
X-axis, this equetion becomes x(t) = x_ + vt , i.e. our familiar equetion from elementary kinematics.

(b) particle moving with constant acceleration

V(t) =v +atand r(t)=r_+vt+ %Euz , Where r and v. aretheinitid postion and velocity of the

paticle, respectively. Again, for motion only dong the x-axis, we get:

1
v(t) =v, +atand x(t) =x, +vt +E at’

Decderation is a negetive accderation. Example: a car is moving with constant speed u. At time t=0
the driver uses the brakes to decelerate uniformly. The car comes to a hdt after a distance s. What
was the deceleration of the car?

The velocity of the car, and the distance it hastraveled at timet are given by

1
V=u-at and x:ut-Eat

We are given the totd distance it travels until it stops, i.e. until v = 0. From the velocity equation, this

will tke t=u/a sec. Subdituting this vadue of time in the distance eguation, we obtan

s=u£-—1au—2=u— =—,
a 2 a 2a 2s

Another example: a gun fires a particle a an angle g with respect to the horizontd, with initid veocity

V, . How far from the gun does the bullet land?

Decompose the motion aong two independent axes, the horizontal (x) and vertical (y). Wetakethe

origin to be at the gun.
Along the x-axis motion with congtant velocity vV, =V, cosgP x =V,t. Thus, we need to find how

long it will take the bullet to drike the ground. This is given by twice the time it takes it to reach its

maximum height, H. Now aong the y-axis, we have a particle that is moving with congtant acceleration
—g, and with initid velodity vV, =V, sin . We have dready computed the time it will take the bullet to

reech this maximum height (i.e. the time it will take to stop moving in the verticd direction) in the
. . \% . . . .
example above with the decderating car: t =—~. Thus, the totd travel time is twice thet (it takes the
g

bullet this much longer to come back down to the ground) and thus the horizonta distance from the gun

will be
\% V 2dn gcos V 29n2
X=V t=V 2—X=2—° 9. % 9
g g g




(c) Motionin acircle
Since vedocity is a vector, one can have a change in velocity without a change in speed (i.e. the
magnitude of the veocity vector). A paticle moving with constant speed in a circle of radius R
accderates continuadly!

With our origin a the center of the circle, the postion v
vector a time t and t+dt is givenby rand r +dr o
respectively. The velocity vector isv and v+ dv. Tofind v
the acceleration, we need to compute the vector dv.
From thefigu[e, dv » - vdff. Therefore,

«:—Yz% :E(_Vdf F)=-vf% =-VWr.
Fndly, snce v=wR, we g¢t, for a paticle moving ina " z_(?
circle with constant speed v (or angular velocity w) e

a=- v f =-WRfP

We could have proven this by using straightforward derivatives also: ® df
r(t) = R(coswt X + sin wty) b V(t):j—:: R(- wWan Wt X + wWcosWwt ¥) y ?
5(t):ﬂ:-R(choswt§<+V\fsinvvt9)D 5(t)=-v\fli fmv

dt

Example: a particle of mass m moving on a frictionless table with congtant speed v. It is connected to a
string supporting amass M. What is the radius, R, of the circle?

The paticde is moving in a crde thus it is
accderating, and thus there must be a net force acting
onit: thetenson fromthedring, T.
Ths T =ma=-m—=

R

Mg




(2) Forces

(a) Newton and Gravity
According to Newton, force isthe "thing" that causes the momentum of an object to change:

F :di(ﬁ) P p=Constantwhen F =0. From this, and for the specia case of a constant mass, we
t

get the familiar Force = mass’ accderation formula:

- d_. d d - -
F=z—p=—mv=m—v=ma
at dt at

Whlleweareon the subject of Newton, let us remember hlsthlrdIaN aso, i.e that Action = Reaction:
F21 =-F,, i.e the force on particle 2 from particle 1, qu is equa and opposite to the force on
paticle 1 from particle 2, F12 :

A mog familiar example of aforce is gravity. The gravitationd force between two bodies with masses

1m2
2

m, and m, is F =- G——= where the — Sgn indicates that the force is attractive. In the case of the

earth and an apple, which is a a height h above the earth's surface, the magnitude of the forceis given

by

= (;\AF;)Z = Gl\lirzna ?"’%g @GI\/Iimaf 2hOwhere RistheEarth 'sradius . A typicd
aople tree is about a few meters tal, and the radius of the earth is gpproximately 6,400 km. Thus, the
second term in the parenthesis is of the order one millionth (106 ), and is thus negligible compared to

thefird teem. Thus, F = GF:?e

Equipped with the kinematics from section 1, we can now solve for the motion of any partide in the
gravitationa field: it corresponds to motion with constant accderation —g aong the y-axis. We have
aready used thisin the section on kinematics in the balligtics problem.

(b) Conservation of momentum and Collisions.

If the tota externd force on a system of particles is zero, then the totad momentum of the system is
congant. Applications: two colliding masses m, and m, with initial velodties v, and v, respectively,

collide head-on, and gtick to each other.  What isthe velocity of the two masses after the collison?
m,v, - myv, = (m, +m,)V whereV isthe wanted find veocity.



(3) Work and Enerqgy

(@) Introduction

Suppose we know the tota force, F(F 1), acli ng on a particle of mass m, as afunction of the particle's
postion and time.  Classical mechanics addresses the problem of predicting the motion of this particle:
given this force and some initid conditions (e.g. the postion and velocity of the particle a some time
previous time) what is the velocity and position of this particle?

Let'slook at this problem in the one—dimensiond casefirst, and let's assume that the force does not vary
withtime, i.e F=F(x). To solve for the motion, we integrate with respect to x :

dV Xp thV lde Ihd 1 1
F(X)=m—b A F(X)dx =mA—dx =mA—vdt=mA—(=v3)dt ==m(v.>- v’
() dt Q () Qadt th th(z ) 2 (% )

Thus, if we know the velodity, v_, a some postion x , the velodity, v, at position X is given by
%m\,z -1 mv,” + (‘5 F(x)dx . Sincewe have the velocity, we can now find the position as a function

of time by integrating the velocity with respect to time.

Nomenclature:
% mv® = Kinetic Energy, K, of the particle;

C\)X:F (x)dx =work W, done by the force F on the particle asit movesfrom a to b.

Work-Energy Theorem: Ky, =K, =Wea

Generdize this to three-dimensionad mation, where the particle displacement in an infinitesma time dt is
not just dx but dr". Forming the dot (also cdled "scaa™) product between the vectors F and dr”and
integrating, we get
- o d\7 NI - \de\_i - \tbd\_i — \tbd 1 Py 1 > P

F(r) = mg p 0 F(r)xdr = mQE xdr = mog xvdt = mQE(Ev ) dt :Em(vb - v )iethe
same result like before, that the work done by the force is equa to the change in kinetic energy of the
object.

Note how the work is now a funny integra, namely it is not a usud integrd like c‘;f(x)dx but rather,

the integra of a vector function dotted with the infinitesmal displacement, over the path followed by the
b
paticle, i.e. Of(r)>dr. Thisis our first example of a line integral. It is different from a normal

integral in that here we have to evauate the integrand along a particular path that joins points aand b.

Example: energy of a particle of mass m in a gravitationd field. The field is generated by an object of
mass M. Thework that we do in trangporting the particle from infinity (whereit isfree of al forces) to a



digancer from Misw =- 6F#G(F ) xdr” where the minus sign accounts for the fact that the force we

exet is opposte to the gravitationd force between the two masses. Then,
W =- C\) GMZm dr =- GMm . Thiswork appears as the Potential Energy of the paticlem. W is

r r
independent of the path we use in trangporting m from infinity to the point P. For the apple a aheight h
above the earth’ s surface,

GMm GMm h
- = l1-—)=-—+———h=Constant +mgh
R+h R R ( R) R R o

In other words, apart from a constant factor, | Potentia Energy = mgh|

GMm GMm

h .
1+—)"»-
( R)

(b) Linelntegrals, Work—Ener gy theorem
In generd, the line integrd of a vector function A dong a path of integration, C is written as Q Axdl .

Here di denotes the eement of path dong C. Remarkable property of gravitationd fidd:
Q F, xdl’ =0 F. xdl , i.e. the work done in transporting a particle of any mass from point A to point

B isindependent of the path used. The gravitationd field is an example of a Conservative Field.

This independence of the line integra on the path C is not a property of dl vector fidds. As an
example, suppose a particle of mass m is acted upon by aforce which is afunction of postion on the
Xy plane F(x,y) = x“yX+ xy’y.

y

—>—9 Pixey?

| — Pan1
le—|

\
/ Path 2

If the particle moves from the origin to point P =(x,,y,) via path 1 as shown in the figure, then the

work done adong this path, W, ,is W, = C) x*y, dx :é x,’y, . However, if we compute the work done
by the same force, W, , dlong path 2, thenw, = ¢y'x,y’dy =éx0yo3. iew,® w,. Thefidd F inthis

caseis not aconsarvative fidd.



When the fidld is consarvative, the line integrd from point A to point B is dependent only on the position
of these two points, i.e. - (‘9 Fxdr =U(r,)- U(r,). Inother words, there exists a scalar function

U(r) whichisgivenby u(r)=u,_- Q F xdr where Cis any path that joins the reference point O and
the point P at radid postion r. Using the work—energy theorem,
| Kg - Ka =Wpga=-(Ug- Uy) P Kg +Ug =K, +U, = Congtant |
This congtant we cal the total mechanicd energy of the particle, E. It isa congtant of the motion:
|E = K+U = Constant]|

(c) Theidea of afield; Potential
The gravitationd field due to a gphere of mass M and radius R, for distancesr> R, is given by

GM . . -
E,=- r2r andtheforceonamass mis F=mE;

Note that in the above equation the field due to the mass M is independent of any other field sources!
Thus, for any collection of point masses, we can clam that we know the totd field due to gravity — by
amply applying the superpogtion principle. As an example, given two massesaand b, what isthe field
a point m?
m Thefield a the point m is the sum of the fidds due

to each mass separatedly:
E.(Total) = E; (M,) + E; (M)

GM, . GM, .
=- 3 17 3 2

rl r‘2

Theforceon misthus F = mEG (Total ) .

The mord of the sory is given thefidd at any point, we can compute the force on any smdl "charge’ of
mass m a that point. Given that we know how to get from the force to the velocity of the test charge
(i.e. through the work—energy theorem) and then from the velocity to the position of thetest charge asa
function of time, we conclude that dl we need to do to solve for the motion of asmal test charge misto
find the gravitationd field a dl pointsin space. (Note: thisistrue only for the case wherethe massmis
itself very smdl or the fidd sources are fixed magicdly).

Having defined the fidd in this way, we can now define the Potential of the fidd, f , so that the
potentia energy, U, of a particle of mass minthefiddisgivenby U=mf. Just likethefidd istheforce
per unit charge, the potentid is the potentid energy per unit charge. (Chargein this case refersto mass,
i.e. the "charge" of the gravitationd fidd). So what is left now? To edablish a rdationship for
cdculating the fidd (and thus the force ds0) given the potentid of a fidd.  Snce

f :E =- (‘)(IE [ m) xdr =- QEG xdr , we conclude that the potentid of thefield isthe line integrd of
m



the fidld (let us not bother for the moment with the reference point, i.e. the point for which we know the
vaue of the potentid). Then the question is, how do we get the field if we know the potentia ?
For an infinitesmal path, the line integral is equa to - E, xdr = - Es x - Es,dy- E; dz=df . But

weknow that f =f(x,y,z)p df =£dx+ﬁdy+ﬂdz. Therefore,
X Ty Tz

I T
EG,X__ 1-|-X’ EG,y_ W ! z ﬂZ
Andsince F, =mE, ; F, =mE, ; F, = mE,, we get
=_ U, TU. U,
F=-—X-—y- —
™x v 1z

In other words, given the potentia energy of a particle due to an externd field, we can compute the
force on this particle. Example: for the gravitationd fidd, U = - GMm_ Then,

r
W & GMm O GMmXx _ GMm «

™ WE ey rzs (Cey DT T

From asmilar cdculation for the y and z components, we finaly get

- GMm . . GMm _ GMm
F=-——(XX+W+2z22)=- ——r =-— )

r

i.e. we recover our familiar gravitationd force.

The find gep is to recognize that usng the gradient operator, we write dl of the above in a nice
shorthand notation, namely,

F=-NU ad E=-Kf

Details on the gradient can be found in the appendix.
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(4) Angular momentum, Torgue
The idea is smple: there are cases in which the total force on an object is zero, yet the object is
accelerating.

F An example is given in the figure, where two forces are gpplied to

a cylinder, atached to a frictionless axis through it center. It is
clear that the cylinder will rotate with respect to its axis.

We define the angular momentum of particle with respect to an
d axistobe L =r" p, where r’is the vector from the axis to the
particle, and p isthe momentum of the particle.

V

The magnitude of the angular momentum of a
patideisthus

|I:| =rpsng=pd
where d is the perpendicular distance from the
axis to the momentum of the particle.
The torque with respect to an axisis

definedinasmilarway: € =1~ F. But then:

There is one more quantity that we need to complete the discussion of rotations of rigid bodies, that of
the moment of inertia. Suppose a body is rotating with angular velocity w with respect to some fixed
axis O. Then, the tota kinetic energy of the body is given by the sum of the kinetic energies of the
infinitesma particlesinto WhICh weaan d|V|de|t

E—I|ma mv. _|Ima2er —(Ilma mr.” )W

Ne¥ 2 N® ¥
The quantity in parentheses clearly depends only on the geometrlcd dlstrl bution of the mass on the
body. The sum can be turned into an integral:

| = dm = (3°r dv , wherer isthe density of the body and dV the dement of volume.
But then, the kinetic energy of the rigid body isgivenby E, = % Iw , whereas the angular momentum is

N
o] -, =
L=li W
givenby L = lim | a P = lim, i a ro(mwr)

Utilizinga“~ (b~ €) =(3€)b - (§>45)6,wefindlyga:
L= lim & m{(7, F)W- (7 Wi} =(im & mr Wh L =w

11



In other words, there is a one—to—one correspondence between trandations and rotations. mass
® moment of inertia, velocity ® angular velocity, and force® torque. Summaizing:

Trandation Rotation
position X ® agle q
velocity % ® angular velocity w
acceleration a ® angular acceleration a
force F ® torque t
momentum p ® angular momentum L
mass m ® moment of inertia I
V= % ® = _q
dt dt
= d_V ® a= d_VV
dt dt
p=mv ® L=Iw
F=ma ® f=1la
I_f = % ® f = i
t t
Etkzlmvz ® Erk:—1IW2
2 2

12



(A) Multivariable Calculus
(1) Scalar Functions

For afunction f(x) of one varidble x, the derivative is defined as
i_l. f(x+Dx)- f(x)
dx DU(Q 0 Dx

we know that the derivative at a point is the dope, i.e. the rate of change of the function with respect to
X. In other words, we can predict the change in the value of the function f(x) in theimmediate vicinity of
apoint X, , provided we have the derivative of f at that point:

_aglte 6 f0+DO - F(x)

=3 . lim dx
€ax 9, é@o Dx G

af

What if the function f is a function of two varidbles, x and vy, i.e. f=f(x,y) ? Givenapoint (x,,y,), we

would like to know the change in the function when we change Smultaneoudy x by dx and y by dy.
To compute this change, we first keep the varidble y fixed a the point y, and let the variable x change
by dx; thechangein f , df, isgiven by
o =& 1O FDaYe) - (X0, ¥o)u
= lim ~dx
x® o DX u
Smilarly, if we keep x fixed a x, and we changey by dy, the changein f is given by

€& f,+tDyx)- f(x,y)u

df = ° = <= .d

g)!(rgo Dy H /

we thus define a partid derivative for the function f(x,y) with respect to one of the variables x or y asthe

derivative of f with respect to x or y, keeping the other variable (y or x) fixed. We denote this partid

derivative by Al or E
9ix T
qf qf
Example 1. suppose that f(X,y) = xy. Then, E = yand 'ﬂ_y =X

f f
Example2: f(x,y)=3x"y+2y’ b Al = 6xy and ﬂ—:3x2 + 6y’
9Ix Ty

Equipped with dl this, we can now ask what happens when both x and y change by dx and dy

respectively:
Df = f(x+ Dx,y+ Dy)- f(x,y)=f(x+Dxy+Dy)- f(x,y+Dy)+ f(x,y+Dy)- f(x,y)

= Df(y constant at y + Dy) + Df (X constant at X)
_Jfoy £ DY) o WO
Tix Ty
teking the limit of infinitesma Dx and Dy,
qf bl

df = lim Df =—dx+—dy
DX® 0,DYy® 0 X ﬂy

The generdization to afunction of three varidbles, f (x,y, z), isobvious.

13



f f f
df = ﬂ—dx+ﬂ—dy+ﬂ—dz
Tix Ty Yz

(2) Vector Functions
Let's look at a vector function, A(p), which depends on only one variable, p. What is the changein

this function as p changes by dp ? We redize that this vector function is nothing more than three
independent functions A ( P),A,(P),A,(P). Then,

dA = A(p+dp)- A(p)
= (A(p+dp)- A(p))X+ (A(p+dp)- A(p))Y+(A(p+dp)- A(p))zZ
= dA X+ dAy +dA,Z
Now since A (p),A,(p) A,(p) ae scaar functions of only one variable, we aready know how to

evaluate their differentidls, namely dA = ?ﬁ; o, il {xy2
p

Thefind answer isthus

B A . dA R A A..
dA:i@Xx+ yy+dzzodp
e dp dp dp o

Example the position vector of a patide is given by r = 3°% + 6ty + (3- 4t)z. We have been
through this before: the change in the pogtion vector due to an infinitesmd change in time is Imply
dr = (6tX + 69 - 42)dt .

Findly, we investigate vector functions of severd variables. For illugtration purposes, we consder a
three-dimengona vector function of two varidbles, say pand g :

A(p.a) = A (P.A)X+ A (pg)§+ A(p,g)2p dA=dA (p,q)%+dA (pa)y+dA,(p,q)2

and the differentid of the ith component (i = x,y, z) isgiven by

TA A
dA(pg) = —dp+—-d
(p,Q) ap P g

We now know how to compute the variation of any function, scalar or vector, i.e. 1-D or N-D (where
2-D for example, means 2-dimensond), with respect to variations in the parameters the function
depends on.

A veay interesting — and physcaly meaningful — case is when one has a vector function that depends
on pogition. An example is the gravitationd field. A mass M creates a fidd around it. Any mass m
brough close to M will thus experience a force. We define the field so that it is dependent only on

. Giventhefidd, the

: : .- M
parameters associated with the source.  In other words, we define E; = - S

2

r
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GMm ¢ . In Cartesan coordinates, the fidd is written

force on any m&m|sg|vmby FG: mEG = . "
as
- GM
E; =- 2 2 23/2
(X"+y +27)

G

(XX + Yy + 77)
S0 this is a vector field which depends on three variables, X, yand z The change in thisfidd in the
neighborhood of (x,y,z) i.e. whenx® x+dx, y® y+dy, z® z+dz isthen

- ~ ~ ~ E. E. E
dE, = dEX + dE, § + dE,2 with dE, = = dx + Tty + 1=t g
Tx Ty 9z

" (y?>+ 2% - 2x?)dx - 3xydy - 3xzdz

5/2

de,=-G

X

(X +y +2%)
M -3xydx + (Z + x* - 2y’ )dy- 3yzdz
(XZ +y2+ 22)5/2

dE, = -G

4 - . GM -3xzdx - 3yzdy + (x> + y*- 27)dz
z (X2 +y2+22)5/2

(3) Thegradient operator

An operator is a "thing" that acts on an object. In this sense, the derivative operator is equd to -

Given any function f(x), this operator acts on the function to ddliver a new function, the derivetive of
d df

f(x). Thus, ix f(x) = ix

By the same token, we can think of the differential of a function of three variables as the dot product of

two vectors: the vector ?ﬂ—f, hlli ,ﬂ—fd and the vector (dx,dy,dz). Let uscdl thefirst vector ¢ — the

N

efx vy vze

second vector being equa to dr . Then, df = C xdr . In other words, for any function f(xy,2) we
can definethevector C o 4 g1, ;LG I, o T, ; W0,

™ "My Mz e X "My fze

We define an operator to be equd to the parenthesis that acts on f:
P | I | I
N =X—+ y— +zZ—

11X 1y 1z

we cdl this operator the gradient operator. When it acts on a function, it gives as a vector whose
direction isthe direction of maximum change of the function. 1ts magnitudeis equd to the rate of change
of the function, in this direction of maximum change, with respect to changesin x,y and z.

15



Thisis but a generdization of everything we have done so far: The change in a function of one variable,

. . df df . - . .
f(x), dueto changein x® x+dx is df = d—dx = d—x><dxx. For a function of three variables,
X X
. . S S | N || I ||
f(x Y, 2),theequivdent changeisdf = C xdr ,whereC° x—+ y—+ z—
9Ix Ty 9z

What is the meaning of the gradient of afunction? Remember, the gradient isa vector. The direction of
the vector is the direction in which the change in the function is maximum. And the magnitude of the
vector is equd to the rate of change of the function in this maximd direction.

Example: afly isin aroom whose temperatureisgiven by T(x,y,z) = ity (i.e thear iswarmer as

we go up towards the ceiling, and warmer as we approach, say, the point (0,0) which istaken to be the
middle of the room. In which direction should the fly move in order to maximize the change in
temperature it will experience? This direction is given by the gradient of the temperaure

2xz - 2 " - P
———X- — yzz ;¥ +———-Z. Asexpected, this direction is towards the center of
(X" +y") (X" +y") (x"+y)

the room in the x—y plane, and upwardsin the z direction.

RT=-

Findly, in cylindricd coordinates, (r,f, z) , the gradient is given by K f :E—:F +%:TT—:{ +E—fzi :
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