Physics 8.03 Vibrations and Waves Lecture 6

Driven Coupled Oscillators

Last time: Coupled oscillators

- Normal modes of oscillation
 - Harmonic motion at fixed (eigen)frequencies
 - Amplitude ratios for each mode (constant)
- "Any old motion"
 - All allowed motions are a superposition of all the normal modes

External driving force

Introduce harmonic external driving force in a coupled oscillator system
 N oscillators (N ② 1)

A Recipe'

Find forces acting on each particle Coupled differential equations \blacksquare No driving force \rightarrow homogeneous \blacksquare Driving force \rightarrow at least one eqn. is inhomogenous Always solve homogeneous equation first - Trial solution $\rightarrow x_i(t) = C_i \cos(\omega t - \delta)$ $C_1 \\ C_2$ Coupled (simultaneous) \sim C = Dalgebraic equations

... The Recipe'

"Normal" modes

- Frequencies (eigenvalues): ω_i are the roots of S^{*}, calculate by solving for ω when det(S^{*}) = 0
- Ratios of amplitudes: Plug $\omega = \omega_i$ back into δ^{K} C
- Any other motion
 superposition of all normal modes
- Now turn on the harmonic driving force
 Solve inhomogenous set using Cramer's rule
 For each C_i replace the *i*-th column of S^{*} with D