Physics 8.03 Vibrations and Waves

> Lecture 7 The Wave Equation Solutions to the Wave Equation

Last time: External driving force

- Applied an external driving force to a coupled oscillator system
 - In steady-state coupled system takes on frequency of the driving force
 - When driving force is at a normal mode frequency resonance

A Recipe' for coupled oscillators

Find forces acting on each particle Coupled differential equations \blacksquare No driving force \rightarrow homogeneous \blacksquare Driving force \rightarrow at least one eqn. is inhomogenous Always solve homogeneous equation first - Trial solution $\rightarrow x_i(t) = C_i \cos(\omega t - \delta)$ C₁ C₂ Coupled (simultaneous) \sim C = Dalgebraic equations

A Recipe' for Coupled Oscillatorscontd...

"Normal" modes

- Frequencies (eigenvalues): ω_i are the roots of δ^{\times} , calculate by solving for ω when det(δ^{\times}) = 0
- **•** Ratios of amplitudes: Plug $\omega = \omega_i$ back into $\delta^{\text{H}} C$
- Any other motion

 superposition of all normal modes
- Now turn on the harmonic driving force
 Solve inhomogenous set using Cramer's rule
 For each C_i replace the *i*-th column of S^{*} with D

Last time: N coupled oscillators

■ N identical oscillators (N beads on a string)

- N normal modes
- Frequency and amplitude of motion of the *p*-th depends on
 - Mode number, *n*
 - Location of particle in the array, *p*

As N → ∞, we get a continuous system of oscillators

Wave Equation and its Solutions \blacksquare Waves \rightarrow oscillations in space and time $\blacksquare y(x, t)$ Transverse or longitudinal waves Traveling or standing waves Solutions to wave equation • Pulses of arbitrary shape $\rightarrow y(x, t) = f(x \pm v t)$ • Harmonic pulses $\rightarrow y(x, t) = y_0 \cos(k(x \pm v t) + \phi)$ • Separable solutions $\rightarrow y(x, t) = f(x) \cos(\omega t + \phi)$