
Chapter 12 

Polarization 

In this chapter, we return to (9.46)-(9.48) and examine the consequences of Maxwell’s equa-
tions in a homogeneous material for a general traveling electromagnetic plane wave. The 
extra complication is polarization. 

Preview 

Polarization is a general feature of transverse waves in three dimensions. The general elec-
tromagnetic plane wave has two polarization states, corresponding to the two directions that 
the electric field can point transverse to the direction of the wave’s motion. This gives rise to 
much interesting physics. 

i. We introduce the idea of polarization in the transverse oscillations of a string.

ii. We discuss the general form of electromagnetic waves and describe the polarization
state in terms of a complex, two-component vector, Z. We compute the energy and
momentum density as a function of Z and discuss the Poynting vector. We describe the
varieties of possible polarization states of a plane wave: linear, circular and elliptical.

iii. We describe “unpolarized light,” and explain how to generate and manipulate polarized
light with polarizers and wave plates. We discuss the rotation of the plane of linearly
polarized light by optically active substances.

iv. We analyze the reflection and transmission of polarized light at an angle on a boundary
between dielectrics.
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12.1 The String in Three Dimensions 

In most of our discussions of wave phenomena so far, we have assumed that the motion is 
taking place in a plane, so that we can draw pictures of the system on a sheet of paper. We 
have implicitly been restricting ourselves to two-dimensional waves. This is all right for 
longitudinal oscillations in three dimensions, because all the action is taking place along a 
single line. However, for transverse oscillations, going from two dimensions to three dimen-
sions makes an enormous difference because there are two transverse directions in which the 
system can oscillate. 

For example, consider a string in three dimensions, stretched in the z direction. Each 
point on the string can oscillate in both the x direction and the y direction. If the system were 
not approximately linear, this could be a horrendous problem. Linearity allows us to solve 
the problem of oscillation in the x-z plane separately from the problem of oscillation in the 
y-z plane. We have already solved these two-dimensional problems in chapter 5. Then we 
can simply put the results together to get the most general motion of the three-dimensional 
system. In other words, we can treat the x component of the transverse oscillation and the y 
component as completely independent. 

Suppose that there is a harmonic traveling wave in the +z direction in the string. The 
displacement of the string at z from its equilibrium position, (0, 0, z), can be written as 

~ i(kz−ωt)
i

ª(z, t) = Re 
h
(ψ1x̂ + ψ2ŷ) e (12.1) 

where x̂ and ŷ are unit vectors in the x and y direction and ψ1 and ψ2 are complex parameters 
describing the amplitude and phase of the oscillations in the x-z plane and the y-z plane, 

ψj = Aj e iφj for j = 1 to 2 . (12.2) 

It is convenient to arrange these parameters into a complex vector 

Z = 
µ 

ψ1 

ψ2 

¶ 

, (12.3) 

which gives a complete description of the motion of the string. 

12.1.1 Polarization 

..................................
........
.............................................................................................................................................

.............................
................................................. ... .. 12-1 

“Polarization” refers to the nature of the motion of a point on the string (or other transverse 
oscillation). This motion is animated in program 12-1. You may want to read the discussion 
below with this program running. 
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If φ1 = φ2, or A1 or A2 is zero, then (12.3) represent a linearly polarized string. Linear 
polarization is easy to understand. It means that each point on the string is oscillating back 
and forth in a fixed plane. For example, 

µ 
1 

¶
u1 = (12.4)

0 

µ 
0 

¶
u2 = (12.5)

1 

represent strings oscillating in the x-z plane and the y-z plane respectively. A string oscillat-
ing in a plane an angle θ from the positive x axis (towards the positive y axis) is represented 
by µ 

cos θ 
¶

uθ = . (12.6)
sin θ 

This is shown in the x-y plane in figure 12.1. The polarization vectors (12.4)-(12.6) can be 
multiplied by a phase factor, eiφ, without affecting the polarization state in any important 
way. This just corresponds to an overall resetting of the clock. 

u2 

uθ
6 
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Figure 12.1: u1, u2 and uθ. 

More interesting is circular polarization. A circularly polarized wave in a string is repre-
sented by either µ 

1 
¶ 

(12.7)
i 

or µ 
1 

¶ 

. (12.8)−i 

In (12.7), the y component lags behind the x component by π/2 (=φ2). Thus, at any fixed 
point in space, the field rotates from x to y, or in the counterclockwise direction viewed from 
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the positive z axis (with the wave coming at you), as shown in figure 12.2. This is called 
“left-circular polarization” because the string resembles a left-handed screw. Likewise, 

µ 
1 

¶ 

. (12.8)−i 

represents clockwise rotation of the string. This is called “right-circular polarization.” 

ωt = π/2 

6 
ωt = π/4 
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Figure 12.2: Circular polarization. 

The vector µ 
A 

¶ 

(12.9)
iB 

with A > B > 0 represents elliptical polarization. A point on the string traces out an 
ellipse with semi-major axis A along the 1 axis and semi-minor axis B along the 2 axis, with 
counterclockwise rotation, as shown in figure 12.3 
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Figure 12.3: Elliptical polarization with long axis in the x direction. 
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Figure 12.4: General elliptical polarization. 

A completely general vector can be written in the following form: 
µ 

ψ1 
¶ 

iφ 
µ 

A cos θ − iB sin θ 
¶

= e (12.10)
ψ2 A sin θ + iB cos θ 

with A ≥ |B| and 0 ≤ θ < π and φ is real phase (which is not very relevant relevant to the 
physics but can be there to make the math look uglier). This represents elliptical polarization 
with semi-major axis A at an angle θ with the 1 axis, as in 

µ 
cos θ 

¶
uθ = . (12.6)

sin θ 
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and semi-minor axis B as shown in figure 12.4. If B is positive (negative), the rotation 
is counterclockwise (clockwise). The physically interesting parameters A, B and θ can be 
found from ψ1 and ψ2 as follows: 

A2 + B2 = |ψ1|2 + |ψ2|2 , 
(12.11) 

AB = −Im (ψ1 ψ ∗) .2

Thus, 

A ± B = 
q
|ψ1|2 + |ψ2|2 ¨ 2Im (ψ1 ψ∗) , (12.12)2

gives A and B. Then θ satisfies 

(A2 − B2) cos 2θ = |ψ1|2 − |ψ2|2 , 
(12.13) 

(A2 − B2) sin 2θ = 2Re (ψ1 ψ ∗) .2 

Notice that the overall phase factor eiφ cancels out in (12.11)-(12.13). 

12.2 Electromagnetic Waves 

12.2.1 General Electromagnetic Plane Waves 

.............................
...............................................................................
........
............................................................................................................................................. ... . 12-1. ... . 

We saw in chapters 8 and 9 that an electromagnetic plane wave traveling in the +z direction 
looks like this, 

i(kz−ωt) i(kz−ωt)Ex(z, t) = εxe , Ey(z, t) = εye , (12.14) 

i(kz−ωt) i(kz−ωt)Bx(z, t) = βxe , By(z, t) = βye , (12.15) 

Ez(z, t) = Bz(z, t) = 0 , (12.16) 

where the βs are determined by Maxwell’s equations to be 

n n 
βy = εx , βx = − εy . (12.17) 

c c 

As usual, we have written the wave with the irreducible time dependence, e−iωt. To get the 
real electric and magnetic fields, we take the real part of (12.14)-(12.15). Note, in particular, 
that the constants εj and βj for j = x and y may be complex. 

The restriction to motion in the z direction is not important. Because the physics of 
Maxwell’s equations is invariant under rotations in three-dimensional space, we can write 
down the form of a plane wave moving with an arbitrary ~k vector by extracting the features 
of (12.14)-(12.17) that do not depend on the direction. These are: 
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~ ~ ~i. k, E and B are mutually orthogonal vectors, 

~ ~ ~ ~ ~k · E = ~k · B = E · B = 0 ; (12.18) 

~ii. B is determined by the cross product 

n 1 ~ ˆ ~ ~ ~B = k × E = k × E , (12.19) 
c ω 

where k̂ is a unit vector in the direction of the ~k vector, the direction of propagation of 
the wave. 

These two conditions imply that a general real electromagnetic plane wave can be written as 

E~ = Re 
³ 
~e(~k) e i

~k·~r−iωt ́
 

(12.20) 
B~ = Re 

³
~b(~k) e i

~k·~r−iωt ́
 

~where the vectors, ~e and b, are complex, in general, satisfying 

~b(~k) = 
1 
ω 

~k × ~e(~k) = 
n 
c 

k̂ × ~e(~k) and k̂ · ~e(~k) = 0 . (12.21) 

There are two things to note about the relations, (12.21). 

i. It is enough to specify the direction of the electric field, ~e(~k). The magnetic field is 
then determined by (12.21). The vector, ~e is called the “polarization” of the electro-
magnetic wave. 

~ii. Because of (12.21), the polarization is perpendicular to k, and thus lives in a two-
dimensional vector space. 

In the two-dimensional space perpendicular to ~k, we can choose a basis of real vectors, ê1 

and ê2, where 
ê1 · k̂ = ê2 · k̂ = ê1 · ê2 = 0 , ê1 × ê2 = ˆ (12.22)k . 

For example, for a plane wave traveling in the z direction, k̂ = ẑ, we could take e1 = x̂ and 
e2 = ŷ. Then we can write 

~e(~k) = ψ1 ê1 + ψ2 ê2 . (12.23) 

The components, ψ1 and ψ2 go into the the two-dimensional vector, (12.3), that describes the 
polarization state of the electromagnetic wave, just as it describes the polarization state of 
the string.1 We can always go back to the components of the electric field using (12.23) and 
(12.20) and then find the magnetic field using (12.21). 

1This is sometimes called the Jones vector. See Hecht, page 323. 
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Now the entire discussion of transverse waves on a string from (12.4) to (12.13) can be 
taken over to describe polarized light. The direction of displacement of the string goes over 
directly into the direction of the electric field. Thus the animation in program 12-1 applies 
just as well to the electric field in a polarized wave as to polarization in a string. 

12.2.2 Energy and Intensity 

The energy density in an electromagnetic field is 

1 
µ

² E~ 2 +
1 

B~ 2
¶

E = . (12.24)
2 µ 

Because the energy density is a nonlinear function of the field strengths, we must use real 
fields in (12.24). The momentum density is 

~P~ = ² E~ × B . (12.25) 

The Poynting vector, a measure of energy flow, is 

~ 2 ~S = c P . (12.26) 

These quantities satisfy 
∂ E + ~ r · S~ = 0 . (12.27)
∂t 

The Poynting vector is useful because it measures the intensity of the wave, the energy per 
unit time per unit area carried by the electromagnetic wave. The relation, (12.27), then ex-
presses conservation of energy. The sum of the change in the energy density at any point plus 
the energy flowing away from it is zero. 

To see what these quantities look like in terms of the vector, Z, let us compute the electric 
and magnetic fields explicitly using (12.20) and (12.21): 

i~k·~r−iωt ́
 

E~ = Re 
³ 
~e(~k) e 

(12.20) 
i~k·~r−iωt ́

 
B~ = Re 

³
~b(~k) e 

1 n ~ ~ ˆ ˆb(~k) = k × ~e(~k) = k × ~e(~k) and k · ~e(~k) = 0 . (12.21)
ω c 

The result is 

~E = A1 ê1 cos(~k · ~r − ωt + φ1) + A2ê2 cos(~k · ~r − ωt + φ2) , 
(12.28)√ ~B = µ² 

³ 
A1 ê2 cos(~k · ~r − ωt + φ1) − A2ê1 cos(~k · ~r − ωt + φ2) 

´ 
. 
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Putting this into (12.24) and (12.26) gives 

² E = 
³ 
A2

1 cos2(~k · ~r − ωt + φ1) + A2
2 cos2(~k · ~r − ωt + φ2) 

´ 
, (12.29)

4π 
r 

² c 
S~ = k̂

µ 4π 

³ 
A1

2 cos2(~k · ~r − ωt + φ1) + A2
2 cos2(~k · ~r − ωt + φ2) 

´ 
. (12.30) 

You can check explicitly that (12.27) is satisfied. Because ω is very large for interesting 
electromagnetic waves, we are almost always interested in only the time averaged values of 

~E and S. These are 
² hEi =

8π 

³ 
A2

1 + A2
2 ́

 
, (12.31) 

r 
² cD

~
´ 

S
E 

= k̂
µ 8π 

³ 
A1

2 + A2 . (12.32)2 

Note that the time averaged values depend only on the quantity 

|Z|2 ≡ |ψ1|2 + |ψ2|2 = A1
2 + A2

2 . (12.33) 

The intensity of the light is proportional to |Z|2 . 

12.2.3 Circular Polarization and Spin 

Although linear polarization is more familiar and perhaps easier to understand, there is a 
sense in which circular polarization is the more fundamental. The plane electromagnetic 
wave in the k̂ direction can be rotated around the k̂ axis without changing anything but its 
polarization state. The rotation symmetry of the physics suggests that we ought to be able to 
find states that behave simply under such a rotation, and just get multiplied by a phase factor. 
These states are, in fact, the circular polarization states. The action of a rotation by an angle 
θ about the k̂ axis on the polarization vector, Z, is represented by the matrix 

µ 
cos θ − sin θ 

¶
Rθ = . (12.34)

sin θ cos θ 

For example, Rθ acting on u1, (12.4), gives uθ, (12.6): 
µ 

1 
¶ µ 

cos θ 
¶

Rθ = . (12.35)
0 sin θ 

But on the left- and right-circularly polarized states, 
µ 

1 
¶ 

−iθ 
µ 

1 
¶ µ 

1 
¶ 

iθ 
µ 

1 
¶

Rθ = e , Rθ = e . (12.36)
i i −i −i 

This is related to the fact that the circularly polarized states carry the maximum angular 
momentum possible, which in turn is related to the quantum mechanical property of the spin 
of the photon. 
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12.3 Wave Plates and Polarizers 

One reason that polarization is important is that the polarization state of an electromagnetic 
wave can be easily manipulated. Two of the most important devices for such manipulation 
are polarizers and wave plates. 

12.3.1 Unpolarized Light 

.............................
...............................................................................
........
............................................................................................................................................. ... . 12-2. ... . 

In any beam of light, at any given point and time, the electric field points in a particular di-
rection. Likewise, because any plane electromagnetic wave with a definite angular frequency 
can be described by (12.20) and (12.21), 

~ i~k·~r−iωt ́
 

E = Re 
³ 
~e(~k) e 

(12.20) 
~ i~k·~r−iωt ́

 
B~ = Re 

³
b(~k) e 

~b(~k) = 
1 ~k × ~e(~k) = 

n
k̂ × ~e(~k) and k̂ · ~e(~k) = 0 . (12.21)

ω c 
every plane wave is polarized. However, in an “unpolarized” beam, the light wave consists 
of a range of angular frequencies with different polarizations. As a result of the interference 
of the different harmonic components of the wave, the polarization wanders more or less 
randomly as a function of time and space, and on the average, no particular polarization is 
picked out. A simple example of what this looks like is animated in program 12-2, where we 
plot an electric field of the form 

Ex(t) = cos(ω1t + φ1) + cos(ω2t + φ2) , 
(12.37) 

Ey(t) = cos(ω3t + φ3) + cos(ω4t + φ4) , 

where the phases are random and the frequencies are chosen at random in a small range 
~around a central frequency. You can watch the E field wandering in the x-y plane, eventually 

filling it up. The narrower the range of frequencies in the wave, the more slowly the polar-
ization wanders. In the example in program 12-2, the range of frequencies is of the order 
of 10% of the central frequency, so the polarization wanders rapidly. But for a beam with a 
fairly well-defined frequency, the polarization will be nearly constant over many cycles of the 
wave. The time over which the polarization is approximately constant is called the coherence 
time of the wave. For a plane wave of definite frequency, the coherence time is infinite. 
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12.3.2 Polarizers 

A “polarizer” is a device that allows light polarized in a particular direction (the “easy trans-
mission axis” of the polarizer) to pass through with very little absorption, but absorbs most 
of the light polarized in the perpendicular direction. Thus an unpolarized light beam, passing 
though the polarizer, emerges polarized along the easy axis. 

For the transverse oscillations of a string, a polarizer is simply a slit that allows the string 
to oscillate in one transverse direction but not in the perpendicular direction. 

For electromagnetic waves, the most familiar example of a polarizer, Polaroid, was in-
vented by Edwin Land over 50 years ago, partly in experiments done in the attic of the 
Jefferson Physical Laboratory, where he worked as an undergraduate at Harvard. The idea of 
polaroid is to make material that conducts electricity (poorly) in one direction, but not in the 
other. Then the electric field in the conducting direction will be absorbed (the energy going 
to resistive loss), while the electric field in the nonconductive direction will be unaffected. 
One way of doing this is to make sheets of polymer (polyvinyl alcohol) stretched (to align the 
polymer molecules along a preferred axis) and doped with iodine (to allow conduction along 
the polymer molecules).2 

12.3.3 Wave Plates 

“Wave plates” are optical elements that change the relative phase of the two components 
of Z. Wave plates are possible because there are materials in which the index of refraction 
depends on the polarization. This property is called “birefringence.” It can happen in various 
ways. 

For example, the transparent polymer material cellophane is made into thin sheets by 
stretching. Because of the stretching, the polymer strands tend to be oriented along the stretch 
direction. The dielectric constant in this material depends on the direction of the electric 
field. It is easier for charges to move along the polymer strands than across them. Thus the 
dielectric constant is larger for electric fields in the stretch direction. 

The same effect may arise because of the inherent structure of a transparent crystal. An 
example is the naturally occurring mineral, calcite, a crystalline form of calcium carbonate, 
CaCO3. Crystals of calcite have the fascinating property of splitting a beam of unpolarized 
light into its two polarization states. Birefringence can even be produced mechanically, by 
stressing a transparent material, squeezing the electronic structure in one direction. 

However the birefringence is produced, we can make a wave plate by orienting the mate-
rial so that the x and y directions correspond to different indices of refraction, nx and ny, and 
then making a slice of the material in the form of a plate in the x-y plane, with some thickness 
` in the z direction. Now an electromagnetic wave traveling in the z direction through the 

2See Sears, Zemansky and Young, page 813. 
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plate has different k values depending on its polarization: 
⎧ 

nx 
ω for polarization in the x direction

⎪⎪⎪
k = 

⎨ 
c (12.38) 

ω for polarization in the y direction
⎪⎪⎪ ny⎩ 

c 

In particular, the phase difference, between x and y polarized light in going through the plate 
is 

nx − ny¢φ = ω ` . (12.39) 
c 

Note that in general the phase difference, ¢φ, depends on the frequency of the light. Even if 
nx and ny depend on frequency, it would be a bizarre accident if that dependence canceled 
the ω dependence from the explicit factor of ω in (12.39). 
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Figure 12.5: Initially unpolarized light passing through a pair of crossed polarizers with a 
wave plate in between. 

Consider, now, putting such a wave plate between two crossed polarizers, oriented at 
±45◦, as shown in figure 12.5. Without the wave plate, no light would get through because 
the first polarizer transmits only light polarized at 45◦, described by the Z vector 

√ µ 
1/ 2 

¶
Z = √ (12.40)

1/ 2 

and the second polarizer absorbs it. 
Coming out of the first polarizer, the vector, Z, looks like (12.40) for all the frequency 

components in the white light. But when the wave plate is inserted in between, a frequency 
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dependent phase difference is added, so that the Z vector coming out of the wave plate (up to 
an irrelevant overall phase) looks like 

√ µ 
1/ 2 

¶
Z = √ . (12.41)−i¢φ/e 2 

For frequencies such that e−i¢φ is −1, the light is polarized in the −45◦ direction, and gets 
−i¢φthrough the second polarizer without further attenuation. But for frequencies such that e

is 1, the light is still absorbed by the second polarizer. Intermediate frequencies are partially 
absorbed. 

It is this frequency dependence that produces the interesting patterns of color that you see 
when you put cellophane or a stressed piece of plastic between polarizers. 

12.3.4 Matrices 

The effects of wave plates and polarizers and the like can be summarized by multiplication 
of the Z vector by 2×2 matrices. For example, a perfect polarizer with an axis at an angle θ 
from the 1 axis can be represented by 

µ 
cos2 θ cos θ sin θ 

¶
Pθ = . (12.42)

cos θ sin θ sin2 θ 

The object Pθ is called a “projection operator,” because it projects the vector onto the 
direction parallel to uθ. It satisfies 

PθPθ = Pθ , (12.43) 

as it must, since the first polarizer produces polarized light and the second one transmits it 
perfectly. Pθ acting on a vector transmits the component in the θ direction. This is easiest to 
visualize if θ = 0 or π/2. The matrices 

µ 
1 0 

¶ µ 
0 0 

¶
P0 = , Pπ/2 = , (12.44)

0 0 0 1 

represent polarizers along the 1 and 2 axes respectively. 
A wave plate in which the phase difference is π/2 is called a “quarter wave plate.” For a 

wave plate in which the phase difference is between 0 and π, it is conventional to call the axis 
with the smaller phase the “fast axis.” A quarter wave plate with fast axis along the 1 axis is 
represented by µ 

1 0 
¶

Q0 = . (12.45)
0 i 

Notice that we can write 
Q0 = P0 + iPπ/2 . (12.46) 
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This should convince you that in general if the fast axis is in the θ direction, the quarter wave 
plate looks like 

Qθ = Pθ + iPθ+π/2 . (12.47) 

The discussion of (12.39) shows that in general, a wave plate will only be a quarter wave 
plate for light of a definite frequency. 

A wave plate in which the phase difference is π is called a “half wave plate.” A half wave 
plate is obtained by replacing the i in (12.45)-(12.47) by -1. Thus, 

Hθ = Pθ − Pθ+π/2 . (12.48) 

Notice that 
Hθ = QθQθ ; (12.49) 

two quarter wave plates make a half wave plate. 
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x̂

ẑ Pπ 
4 

Figure 12.6: Producing circularly polarized light. 

Here are two amusing devices that you can make with these optical elements (or matri-
ces). Consider the combination of first a polarizer at 45◦ and then a quarter wave plate, as 
shown in figure 12.6. By forming the matrix product, Q0 Pπ/4, you can see that this produces 
counterclockwise circularly polarized light from anything with a component of polarization 
in the π/4 direction. The argument goes like this. The product is 

µ 
1 0 

¶ µ 
1/2 1/2 

¶ µ 
1/2 1/2 

¶
Q0 Pπ/4 = = . (12.50)

0 i 1/2 1/2 i/2 i/2 

When this acts on an arbitrary vector you get circularly polarization unless the vector is 
annihilated by Pπ/4. µ 

ψ1 
¶ 

ψ1 + ψ2 
µ 

1 
¶

Q0 Pπ/4 = . (12.51)
ψ2 2 i 
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In the opposite order, Pπ/4 Q0 is an analyzer for circularly polarized light. It annihilates 
counterclockwise light and converts clockwise polarized light to light linearly polarized in 
the π/4 direction. 

12.3.5 Optical Activity 

“Optical activity” is a property of many organic and some inorganic compounds. An opti-
cally active material rotates the polarization of light without absorbing either component of 
the polarization. A familiar example of such a material is corn syrup, a thick aqueous solution 
of sugar that you probably have in your kitchen. If you put a rectangular container of corn 
syrup between polarizers, as shown in figure 12.7, and rotate the second polarizer until the 
intensity of the light getting through is a maximum, you will find that direction of the second 
polarizer is not the same as that of the first. The plane of the polarization has been rotated 
by some angle θ. The rotation angle, θ, is proportional to the thickness of the container, the 
length of the region of syrup that the light goes through. 
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Figure 12.7: A rectangular container of corn syrup between polarizers. 

Clearly, the optical activity of corn syrup cannot depend on crystal structure, because the 
stuff is a perfectly uniform liquid, completely invariant under rotations in three-dimensional 
space. It can have no special axes, or any such thing. Optical activity must work very differ-
ently from birefringence. 

You can find a clue to the nature of optical activity by considering what it looks like if 
you look at it in a mirror. If you reflect the system illustrated in figure 12.7 in the x-z plane, 
by changing the sign of all the y coordinates, the angle θ changes to −θ. Thus the corn syrup 
that you see in a mirror must be fundamentally different from the corn syrup in your kitchen. 
This is not so strange. After all, your right hand looks like a left hand when you look at it in 
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a mirror. The corn syrup must have the same property and have a definite “handedness.” In 
fact, because of the tetrahedral bonding of the carbon atoms of which they are built, the sugar 
molecules in the corn syrup can and do have such a handedness. 

Because of the handedness of the sugar molecules, the index of refraction of the corn 
syrup actually depends on the handedness of the light. It is slightly different for left- and 

~right-circularly polarized light. This happens because the E field of a circularly polarized 
beam twists slightly as it traverses each sugar molecule and sees a slightly different electronic 
structure depending on the direction of the twist. Then, because the indices of refraction are 
slightly different, the left- and right-circularly polarized components of the light get different 
phase factors (k`) in passing through a thickness, `, of the syrup. 

We can now use our matrix language to see how this leads to optical activity. Up to an 
irrelevant overall phase, we can choose the phase produced on the left-circularly polarized 
light to be −θ and that on the right-circularly polarized light to be θ. Then we can represent 
the action of the syrup on an arbitrary wave by the matrix 

−iθ P+ + e iθ P− ,e (12.52) 

where P± are matrices that pick out the left- and right-circularly polarized components, re-
spectively. They satisfy 

P± 

µ 
1 

¶ 

= 
µ 

1 
¶ 

, P± 

µ 
1 

¶ 

= 0 . (12.53)±i ±i ¨i 

You can check that the matrices are 

1 
µ 

1 ¨i 
¶

P± = . (12.54)
2 ±i 1 

Then (12.52) becomes 

−iθ 1 
µ 

1 −i 
¶ 

iθ 1 
µ 

1 i 
¶ µ 

cos θ − sin θ 
¶

e + e = . (12.55)
2 i 1 2 −i 1 sin θ cos θ 

This is just the rotation matrix Rθ, of (12.34)! Rθ rotates both components of any light by an 
angle θ. 

One might wonder about the reason for the handedness of the sugar molecules. In fact, 
there are physical processes, the weak interactions that give rise to β-radioactivity, that look 
different when reflected in a mirror3 and thus in principle could distinguish between left-
handed and right-handed molecules. However, these interactions are most likely irrelevant to 
the handedness of corn syrup. Probably, the reason is biology rather than physics. Long ago, 
when the beginnings of life emerged from the primordial soup, purely by accident, the right-
handed sugars were used. From then on, the handedness was maintained by the processes of 
reproduction. 

3They violate what is called “parity” symmetry. 
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Figure 12.8: Initially unpolarized light passing through a pair of crossed polarizers. 

12.3.6 Crossed Polarizers and Quantum Mechanics 

Polarization offers many opportunities to get confused when you think of the light wave 
in terms of photons. Let us imagine turning down the intensity of the light to the point 
where one photon at a time is going through the polarizers and consider first the deceptively 
simple situation of light moving in the z direction through crossed polarizers in the x-y plane. 
Suppose that the first polarizer transmits light polarized in the x direction, and the second 
transmits light polarized in the y direction. This is deceptively simple because it seems that 
we can interpret what is going on simply in terms of photons. The situation is depicted in 
figure 12.8. This seems simple enough to interpret in terms of photons. The unpolarized light 
in region I is composed equally of photons polarized in the x direction and in the y direction 
(goes the wrong “classical” argument). Those polarized in the x direction get through the 
first polarizer, so half the photons are still around in region II, where the intensity is reduced 
by half. Then none of these get through the second polarizer, so that the intensity in region 
III is zero. 

But compare this with the apparently similar situation in which the second polarizer trans-
mits light polarized at 45◦ in the x-y plane, as shown in figure 12.9. Now the wave description 
tells us that the intensity in region III is reduced by another factor of 2 from that in region 
II. This is impossible to interpret in terms of classical particles. To see this, it is only neces-
sary to turn down the intensity so that only one photon comes through at a time. Then the first 
polarizer is OK. As before, if the photon is polarized in the x direction, it get through. But 
now what happens at the second polarizer. The photon cannot split up. Either it gets through 
or it doesn’t. To be consistent with the wave description, in which the intensity is reduced by 
another factor of two, the transmission at the second polarizer must be a probabilistic event. 
Half the time the photon gets through. Half the time it is absorbed. There is no way for the 
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Figure 12.9: Initially unpolarized light passing through a pair of polarizers at with axes at 
45◦ . 

photon in region II to tell whether it is going to make it! It is random. God plays dice. 

12.4 Boundary between Dielectrics 

Let us return to the infinite plane boundary between two dielectrics that we discussed in 
chapter 9, but now consider an electromagnetic wave coming in at an arbitrary angle. As in 
chapter 5, we will assume that the boundary is the z = 0 plane, and that for z < 0 we have 
dielectric constant ², while for z > 0, dielectric constant ²0. We assume µ = 1 everywhere. 

On the general grounds of translation invariance and local interactions discussed in the 
previous chapter, all the components of the electric and magnetic fields will have the general 
form 

~̃
i~k·~ k·~rψ(r, t) ∝ e r + R ei for z ≤ 0 

(12.56) 
k0·~rψ(r, t) ∝ τ ei~ for z ≥ 0 

where 
˜ k0kx = kx , = kx , (12.57)x 

and 

k̃z = −
q

ω2/v2 − k2 = −kzx 
(12.58) 

k0 = 
q

ω2/v02 − k2 .z x 
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Thus Snell’s law is satisfied, with θ and θ0 defined as shown in figure 12.10. 

k · sin θ = k0 sin θ0 . 

√ ω ω |~k| = µ² = n (12.59) 
c c 

n sin θ = n 0 sin θ0 . 

k̃xiPPPPP
6

¾ 

k̃zPPPPPPPPP
��������� 

i : 
θ 

�PPPPP
PP

P
PP
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PPPP
PP

����������������
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�������� 

1�����
����

���������

k0kx x »:1 
³³³³³

»»»»»»
6 6 

- -

k0kz z 

z = 0 

Figure 12.10: Scattering of plane waves from a plane boundary. 

The details of the scattering will depend on the polarization. It is clear (by symmetry as 
usual) that the two cases will be polarization in the x-z plane and polarization perpendicular 
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to the x-z plane. Of course, we lose nothing by considering these two separately, because 
of linearity. Any polarization for the incoming wave can be dealt with by forming a linear 
combination of the parallel and perpendicular solutions. 

12.4.1 Polarization Perpendicular to the Scattering Plane 

Let us first consider perpendicular polarization. This means that the electric field is in the y 
direction (out of the plane of the paper), while the magnetic field is the x-z plane:4 

~̃
k ~r−ωt) + R⊥ Aei(k·~r−ωt)Ey(r, t) = Aei(~ for z ≤ 0 

k0·~r−ωt) (12.60)Ey(r, t) = τ⊥ Aei(~ for z ≥ 0 

Ez = Ex = 0 

Using (12.19)) 
~B = 

n 
c 
k̂ × ~E = 

1 
ω 

~k × ~E , (12.19) 

we can write 

n n ~̃
k·~r−ωt) + k·~r−ωt)Bx(r, t) = − A cos θ ei(~ cos θ R⊥ Aei( for z ≤ 0 

c c 
n0 k0·~r−ωt)Bx(r, t) = − cos θ0 τ⊥ Aei(~ for z ≥ 0 
c 

n n ~̃
k·~r−ωt) + k·~r−ωt) (12.61)Bz(r, t) = sin θ Aei(~ sin θ R⊥ Aei( for z ≤ 0 

c c 
0n k0·~r−ωt)Bz(r, t) = sin θ0 τ⊥ Aei(~ for z ≥ 0 

c 

By = 0 . 

The system is shown in figure 12.11. This figure shows the directions of the magnetic 
~ ~ ~fields of the incoming ( Bi), reflected ( Br), and transmitted ( Bt) component waves in scatter-

ing of an electromagnetic plane wave polarized parallel to a plane dielectric boundary. The 
~k vectors are shown directly beneath the magnetic fields. The nontrivial boundary conditions 
are that Ey and Bx are continuous (the latter because we have assumed µ = 1 so there is 
no sheet of bound current on the boundary). Bz is also continuous, but that provides no new 
information. Thus 

1 + R⊥ = τ⊥ (12.62) 

4The quantities, R⊥ and τ⊥ in this section and Rk and τk in the next are conventionally called “Fresnel 
coefficients.” See Hecht, page 97. 
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Figure 12.11: Scattering of an electromagnetic plane wave polarized parallel to a dielectric 
boundary. 

n cos θ (1 − R⊥) = n 0 cos θ0 τ⊥ (12.63) 

or because n ∝ |~k| 
kz (1 − R⊥) = k0 z τ⊥ . (12.64) 

Thus 

τ⊥ = 
2 

1 + ξ⊥ 
(12.65) 

R⊥ = 
1 − ξ⊥ 

1 + ξ⊥ 
(12.66) 



354 CHAPTER 12. POLARIZATION 

where 
k0 zξ⊥ = . (12.67)
kz 

12.4.2 Polarization in the Scattering Plane 

Polarization in the x-z plane looks like 

~̃
k·~r−ωt) + Rk Aei(k·~r−ωt)By(r, t) = Aei(~ for z ≤ 0 

(12.68) 
k0·~r−ωt)By(r, t) = τk Aei(~ for z ≥ 0 

Bz = Bx = 0 , 

where, for convenience, we have defined the reflection and transmission coefficients in terms 
of the magnetic fields, and 

~̃c k·~r−ωt) − 
c k·~r−ωt)Ex(r, t) = cos θ Aei(~ cos θ Rk Aei(− for z ≤ 0 

n n 
c k0·~r−ωt)Ex(r, t) = cos θ0 τk Aei(~ for z ≥ 00n

c c ~̃k·~r−ωt) − k·~r−ωt) (12.69)Ez(r, t) = − sin θ Aei(~ sin θ Rk Aei(− for z ≤ 0 
n n 

c k0·~r−ωt)Ez(r, t) = − sin θ0 τk Aei(~ for z ≥ 00n

Ez = 0 . 

Now the nontrivial boundary conditions are the continuity of By and Ex. Ez is not continuous 
because a surface bound charge density builds up on the dielectric boundary. The boundary 
conditions yield 

1 + Rk = τk (12.70) 

cos θ cos θ0 
(1 − Rk) = τk (12.71)0n n

or 
2 

τk = (12.72)
1 + ξk 

1 − ξk
Rk = (12.73)

1 + ξk 



355 12.5. RADIATION 

where 
cos θ0/n0 n2 k0 zξk = = . (12.74)
cos θ/n n02 kz 

One of the interesting things about (12.74) is that when 

2 k0n z = 1 (12.75) 
n02 kz 

there is no reflection. This condition is satisfied for a special angle of incidence called Brew-
ster’s angle. We can understand the significance of Brewster’s angle as follows: 

n2 sin2 θ0 
from Snell’s law, = (12.76) 

n02 sin2 θ 

kz 
0 kx/kz tan θ 

= = (12.77)
kz k0 /k0 tan θ0 x z 

2 k0n sin θ0 cos θ0 z = = 1 . (12.78) 
n02 kz sin θ cos θ 

Thus sin 2θ = sin 2θ0. Because θ 6= θ0 (that would be the trivial situation with no boundary), 
this means that 

θ = π/2 − θ0 . (12.79) 

In other words, Brewster’s angle is defined by the condition that the reflected and transmitted 
plane waves are perpendicular, as shown in the diagram in figure 12.12. The relevance of this 
condition is that the reflected wave can be thought of as being produced by the motion of the 
charges on the boundary. But if these are moving in a direction perpendicular to the electric 
field in the would-be reflected wave, then the wave cannot be produced. 

12.5 Radiation 

In this section, we write down the electric and magnetic fields associated with changing 
charge and current densities. 

12.5.1 Fields of moving charges 

Because Maxwell’s equations are partial differential equations, lots of initial conditions or 
boundary conditions must be specified to determine the solutions. For example, a constant 
electric field everywhere is a solution to the free-space Maxwell’s equations, and therefore 
you can add a constant field to any solution and it will still be a solution. Such things must be 
determined by physical initial conditions or boundary conditions. One set of conditions that 
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Figure 12.12: Brewster’s angle. 

is frequently interesting is an analog of the boundary condition at infinity that we discussed 
for one-dimensional waves. Suppose that you have a universe which is initially stationary, 
with no electric currents, no magnetic fields, and only electric fields due to stationary charges 
(which you know how to compute from Physics 15b). At some time, you begin to move 
charges around in some finite region of space. What are the electric and magnetic fields 
produced in this way? This question has a relatively simple answer that is a nice intuitive 
generalization of the relations you learned in 15b for the electric and vector potentials from 
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stationary charge and current distributions. These relations were 

It is a straightforward, but tedious, exercise in vector calculus to show these satisfy Maxwell’s 

φ(~r) = 
Z 

d3 0 r 
ρ(r~0) 
|~r − r~0| 

(12.80) 

The generalizations are 

~A(~r) = 
1 

Z 

c 
d3 0 r 

~J (r~0) 
|~r − r~0| 

(12.81) 

φ(~r, t) = 
Z 

d3 r 0 
ρ(r~0, t − |~r − r~0|/c) 

|~r − r~0| 
(12.82) 

~A(~r, t) = 
1 

Z 

c 
d3 0 J (r~0, t − |~r − r~0|/c) 

r 
~

|~r − r~0| 
(12.83) 

equations. I am not going to talk about this (I’ll write down the derivation in an appendix 
for those of you who are interested), but it is worth trying to understand what these relations 
mean physically. The important physical point that these relations imply is that if the charge 
and current distributions depend on time, and if they are producing the fields, then what de-
termines what the field is at some point ~r is the values of the charge and current distributions 
at earlier times. The farther away the charge is, the earlier the time has to be. That is what 
the factor of t − |~r − r~0|/c is telling us. The appearance of this factor is a kind of boundary 
condition at infinity. It is consistent with the relativistic version of the principle of causal-
ity. Because information cannot be transferred faster than light, a charge distribution at a 

0space-time point (~r , t0) can effect the fields at the space-time point (~r, t), only if t ≥ t0 and 

|~r − r~0| ≤ c (12.84)
t − t0 

In these relations, (12.82) and (12.83), however, the condition is even stronger — a charge 
0distribution at a space time point (~r , t0) can effect the fields at the space time point (~r, t) only 

0if light can travel directly from (~r , t0) to (~r, t) — that is if t ≥ t0 and 

|~r − r~0| 
= c (12.85)

t − t0 

or 
0t − t = |~r − r~0|/c (12.86) 

or 
0 r − ~ t = t − |~ r0|/c (12.87) 
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These are just words. We have not derived this! The real justification of this discussion 
comes when you check that the relations actually satisfy Maxwell’s equations. That can wait 
for Physics 153 or 232 (or the appendix if you are in a hurry). However, I hope that this 
discussion at least makes the result reasonable. In fact you have already seen the result in 
action in 15b in Purcell’s discussion of the electric field from a charge that starts and stops. 
Look at the ANIMATIONS - PURCELL - the field from a charge that suddenly accelerates. 
This is an animation of a famous figure in Purcell’s book. The interesting thing about the 
animation is the kink in the electric field that propagates out from the acceleration event at 
the velocity of light — because it is light. Inside the kink, the fields are those of the moving 
charge. Outside the kind, the fields are those of the stationary charge. The kink — the 
electromagnetic way — is what connects the two asymptotic regions together. It is also fun 
to compare with PURCELL2 which illustrates what happens if an initially moving charge 
stops suddenly. 

Now let’s see at what the electric and magnetic fields look like in an important limit. The 
connection between the potentials and the fields is the following: 

1 ∂ ~ ~ ~E = −rφ − A (12.88) 
c ∂t 

~ ~ ~B = r× A (12.89) 

These relations are completely general. The special limit that I want to consider is one in 
which the charges and currents are confined to a small region around ~r = 0. Then we will 
look at the electric and magnetic fields produced by the moving charges far away, for large 
|~r|. It is actually easiest to look at the magnetic field: 

1 J~(r~0, t − |~r − r~0|/c)~ ~ ~ ~ 
Z 

d3 0B = r× A = r× r (12.90) 
c |~r − r~0| 

~The point is that the curl (r×) can operate in two different places, either on the 1/|~r − r~0| or 
on the −|~r − r~0|/c in the time dependence of J . The first gives a contribution that drops of 
like 1/r2 for large r, just like the magnetic field from a time-independent distribution of cur-
rents. But the second gives a contribution that only falls off like 1/r. Thus this contribution 
dominates for large r. Explicitly (using the chain rule), it is 

1 ~r − r~0 d ~
Z 

d3 0 ~B = − r × J (r~0, t − |~r − r~0|/c) (12.91)
2 2c |~r − r~0| dt 

1 1 
Z 

d → − d3 r 0 r̂ × J~(r~0, t − |~r − r~0|/c) (12.92)
2c r dt 

where in (12.92) we have dropped a r~0 in the numerator because this term falls like 1/r2 for 
large r. 
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This is the magnetic field of an electromagnetic wave. Notice that it is perpendicular to 
the direction of motion (r̂). The 1/r fall-off is what we expect for an electromagnetic wave, 
because the energy density goes like the square of the field, and falls off like 1/r2 as the wave 
spreads. 

The electric field can be computed in a similar way, although you also need to use the 
conservation of electric charge. 

∂ 
ρ + ~ ~r · J = 0 (12.93)

∂t 
As you would expect, the result is that the electric field has the same magnitude as the mag-
netic field and is perpendicular to both direction of motion and to the magnetic field. The 
piece that corresponds to a traveling electromagnetic wave can be written as 

0 01 
Z 

~r − r~ 
Ã 

~r − r~ d 
! 

~ d3 0 ~E → − r × × J (r~0, t − |~r − r~0|/c) (12.94)
2c |~r − r~0| |~r − r~0|2 dt 

0 ˆ ~→ 
1 1 

Z 
d3 r r × 

µ
r̂ × 

d J (r~0, t − |~r − r~0|/c)
¶ 

(12.95)
2c r dt 

To lowest order in 1/r for charges moving with velocities much smaller than c, we can 
simplify the electric field in (12.95) by substituting 

|~r − r~0| → r (12.96) 

and write the result as 

~ 1 1 
Z 

d3 0 ˆ
µ

ˆ
d J~(~ 

¶
E(~r, t) ≈ r r × r × r0, t − r/c) (12.97) 

2c r dt 

The reason for the restriction to nonrelativistic motion of charges is that if a charged particle 
~0is moving at a speed close to the velocity of light, then we cannot neglect its position, r , 

when it is moving towards ~r. To see this, consider the impossible limit in which the charge is 
moving towards the point ~r at the speed of light. Then if the charge contributes to the electric 
field at ~r at one time, then it also contributes at later times because the particle keeps up with 

~the moving light wave. While v = c is impossible, for v ≈ c, the r0 dependence cannot be 
ignored because it leads to very rapid time dependence of the potentials, and hence to large 
fields. What happens is that the contribution of charges moving relativistically to the electric 

cfields in front of them get enhanced by factors of . This effect is widely used today to c−v 
produce intense “light” from particle accelerators — so called synchrotron radiation. You 
can see this effect in the ANIMATIONS if you make v close to 1. 

http:r/c)(12.97
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A particularly important and instructive case of (12.97) is the nonrelativistic motion of a 
~single charge, Q, moving along a trajectory R(t). For this system,5 

~dR(t)~ ~ ~J (~r, t) = Q~v(t) δ3(~r − R(t)) = Q δ3(~r − R(t)) (12.98)
dt 

Then the integration over d3r0 in (a) eliminates the δ-function, and the electric field of the 
outgoing electromagnetic wave is proportional to the acceleration, 

dt2 

~E(~r, t) ≈ 
1 
c2 

1 
r 

Q r̂ × (r̂ × ~a(t − r/c)) (12.99) 

where 

~a(t) = 
d2R~ (t) 

(12.100) 

All that the cross products with r̂ do is to pick out minus the component of ~a(t − r/c) that is 
perpendicular to ~r. It follows from the famous “bac-cab” identity, 

~a × 
³
~b × ~c 

´ 
= ~b 

³ 
~a · ~c 

´ 
− ~c 

³ 
~a · ~b 

´ 
, (12.101) 

that 

E~ (~r, t) ≈ − 
1 1 

Q 
µ
~a(t − r/c) − r̂

³ 
r̂ · ~a(t − r/c) 

´¶ 

. (12.102)
2c r 

This had to happen because the electric field of an electromagnetic wave is perpendicular to 
its direction of motion. In this case, for large r, the wave is nearly a plane wave moving in 
direction ~r. 

12.5.2 The Antenna Pattern 

Let us do an even more explicit example by considering a charge that oscillates harmonically 
along the z axis, 

~R(t) = ` ẑ cos ωt . (12.103) 

so that 
~a(t) = −`ω2 ẑ cos ωt . (12.104) 

5This equation makes use of δ-function notation. To a physicist, a δ-function δ(x) is just a function that has 
area 1 and is so sharply peaked around x = 0 that we don’t care exactly what it looks like. All that matters is 

~the area and where the peak is. The δ3
¡
~r − R(t)

¢ 
in the equation is actually the product of three delta functions, 

~for the x, y and z components, and just tells you that ~r = (x, y, z) = R(t) = 
¡
X(t), Y (t), Z(t)

¢ 
— that is 

that the particle is moving along the trajectory R(t). For a mathematical discussion of the δ-function you can ~

look at http://mathworld.wolfram.com/DeltaFunction.html. But don’t be frightened. It is just a simple device for 
ignoring small details that we don’t care about. If you translate the integral into words or pictures, it may help. 

http://mathworld.wolfram.com/DeltaFunction.html
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`ω2 1 
E~ (~r, t) ≈ Q 

µ
ẑ − r̂(r̂ · ẑ)

¶ 

cos[ω(t − r/c)] . (12.105)
2c r 

The vector ẑ− r̂(r̂ · ẑ) is the component of ẑ perpendicular to ~r, as illustrated in figure 12.13. 
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Figure 12.13: 

Evidently, the magnitude of ẑ − r̂(r̂ · ẑ) is sin θ. This means that the intensity of the 
electromagnetic wave at an angle θ from the z axis is proportional to sin2 θ. The intensity 
pattern can be conveniently represented in polar coordinates, where we plot the intensity as 
a function of θ. The result is shown below. This is the “antenna pattern” for the oscillating 

............
..............

...............
....................

........................
............................................................................... 

..............
...............

................
....................

...........................
........................................................................................................................... 

........

.........

.........
........
.........
..........
..........
...........

.....

... 

............................................................................................................................................................................................................................................................
...........
..........
...........
............
..........
............

..............
.....

.................. 

..............................
....................

.................
...............
.............
...........
...........
..........
..........
.........
........
.........
.........
.....

.................................
.......................

..................
...............

.............. 

...........................................................................................................................................................................................................................................................................................................................................................................................................................

.............
..............
............
...........
............
..........
...........
...........
....................................................................................................................................................................................................................................................................................................... 

Figure 12.14: 

dipole in the z direction. It is shown in figure 12.14. The two lobes of the pattern arise 
because the field is highest in the x-y plane, for θ = π/2, and drops to zero as we approach 
the z axis, θ = 0 or θ = π. 

12.5.3 * Checking Maxwell’s equations 

These things are called retarded potentials. This is a confusing name, since there is really 
nothing special about the potentials themselves. What is special is the assumption of a partic-
ular relation between the potentials and the charges and currents — that the fields are being 
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produced entirely by the charges and currents. Here I show that they satisfy Maxwell’s equa-
tions. I call this an appendix because you are NOT responsible for knowing the details. I 
include it for your general education. 

Some mathematical things to notice about the solution: 

∂ 
ρ + ~ ~r · J = 0 (12.106)

∂t 

implies 
∂ ~ ~φ + cr · A = 0 (12.107)
∂t 

This is called the Lorentz gauge condition. 

1 ∂ ~ ~ ~ ~r · E = −r2φ − r · A (12.108) 
c ∂t Ã 

1 ∂2 
! 

= −r2 + φ (12.109) 
c2 ∂t2 

1 
d3 0 r − ~ = 

Z 
r 

Ã 

ρ(r~0, t − |~ r0|/c) 
³ 
−r2 ́

 
(12.110) 

|~r − r~0| 
1 

Ã 
1 ∂2 

! 

+ −r2 + ρ(r~0, t − |~r − r~0|/c) (12.111)
2|~r − r~0| c ∂t2 

Ã 
1 

!! 

~ ~− 2 
³
rρ(r~0, t − |~r − r~0|/c) 

´ 
· r (12.112) 

|~r − r~0| 
The first term is the one we want. It is 

Z
= d3 r 0 ρ(r~0, t − |~r − r~0|/c) 4π δ3 

³ 
~r − r~0

´ 
(12.113) 

= 4π ρ(~r, t) (12.114) 

The other two terms cancel because of the special form of the variable t − |~r − r~0|/c. 

1 
Ã 

1 ∂2 
! 

−r2 + ρ(r~0, t − |~r − r~0|/c) (12.115)
2|~r − r~0| c ∂t2 

Ã 
1 

! 

~ ~− 2 
³
rρ(r~0, t − |~r − r~0|/c) 

´ 
· r (12.116) 

|~r − r~0|
1 1 

= ρ̈(r~0, t − |~r − r~0|/c) (12.117)
2|~r − r~0| c
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1 1 ~r − r~0 ~ r − ~+ r · ρ̇(r~0, t − |~ r0|/c) (12.118) 
|~r − r~0| c |~r − r~0|

1 1 − 2 ρ̇(r~0, t − |~r − r~0|/c) (12.119) 
c |~r − r~0|

wherė means differentiation with respect to the time variable: 

∂ 
ρ̇(r~0, t − |~r − r~0|/c) ≡ ρ(r~0, t0) 

¯̄
¯
t0

(12.120)
~∂t0 =t−|~r−r0|/c 

i and ii come from a (from the ∂
2 

and −r2 terms respectively) and iii comes from b. Now 
∂t2 

~ ~r−r~0the r in ii gives two terms — acting on ρ̇ cancels i and acting on cancels iii. Thus |~r−r~0| 

~ ~r · E = 4πρ . (12.121) 

Likewise, 
1 ∂ ~ ~ ~r× B − E (12.122) 
c ∂t 

1 ∂ 
µ

1 ∂ 
¶

~ 
³
~ A~

´ 
− ~ ~= r× r× −rφ − A (12.123) 

c ∂t c ∂t 

~ 
³
~ ~ A − ~

∂2 
~= r r · A 

´ 
−r2 ~ r 

µ 
1 ∂

φ

¶ 

+
1 

A (12.124) 
c ∂t c2 ∂t2 

or using the Lorentz gauge condition, 
Ã 

1 ∂2 
! 

~= −r2 + A (12.125) 
c2 ∂t2 

~ ~Form here on, the derivation is the same as for r · E, and we find 

1 ∂ 4π ~ ~ ~ ~r× B − E = J (12.126) 
c ∂t c 

QED. 

Chapter Checklist 

You should now be able to: 

i. Describe polarization on a beaded or continuous string; 

ii. Write down the general form of an electromagnetic plane wave and relate it to the 
two-dimensional vector, Z; 
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iii. Find the energy and momentum density of a plane electromagnetic wave; 

iv. Understand the possible polarization states of a plane wave; 

Analyze systems of polarizers and wave plates using matrix multiplication; v. 

vi. Understand the connection between optical activity and handedness; 

vii. Calculate the reflection and transmission of a plane electromagnetic wave from a plane 

= 2 = 0 12.1* A pane of glass with index of refraction sits in the plane, from -n x y z. 
. A plane wave with wave number (outside the glass) comes at the pane at an angle to ` k=z 

2 

boundary between dielectric for any angle and find and explain Brewster’s angle. 

2 

Problems 

θ from the perpendicular in the x-y plane, with kz = k cos θ and kx = k sin θ. 
For each of the two polarization states (in the y direction, and in the x-z plane), some 

fraction of the intensity is reflected as a function of θ and k. In this problem, we will use the 

1 

method of transfer matrices, discussed in Chapter 9 to find it. We will work out the case of 

1 

polarization perpendicular to the x-z scattering plane in detail. Then your job will be to repeat 
the calculation for polarization in the x-z plane. To do it, we must generalize the analysis 
of (12.62)-(12.63) and (12.70)-(12.71) to a situation with arbitrary incoming and outgoing 
waves on both sides and to a boundary at arbitrary z (rather than y for this problem). For the 
perpendicular polarization state, the boundary conditions look like: 

⊥ + e ⊥ + e 

⊥ − e ⊥ + e 

0 0−ikz zR −ikikz zT 1 ik 2zT zR= e z ze ⊥ ⊥ 

n cos θ 
³ 
e 0 

´ 
= n cos θ0 

³ 
e 

´ 0 0−ikz zR −ikikz zT 1 ik 2zT zRz z ⊥ ⊥ 

which gives ¶ 

= d(z) 
µ 

T
R

2 
⊥ 
2 
⊥ 

¶µ 
T
R

1 
⊥ 
1 
⊥ 

where the transfer matrix, d(z) is 

¶ µ 
1 + h⊥ 1 − h⊥ 

¶ µ 
e

1 − h⊥ 1 + h⊥ 
z 

¶0−ikz z1 ik0 0
µ 

e zz 

0−ikikz z0 e 02 ze

with 
n cos θ 

h⊥ = . 
n0 cos θ0 
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Going from index n0 to index n at z gives a transfer matrix that is the inverse of d(z). Apply-
ing this to the present problem, if R⊥ and τ⊥ are the reflection and transmission coefficients 
from the pane of glass, we have 

1
µ ¶ 

= d(0) d(`)−1 
µ 

0 
¶

R⊥ τ⊥ 

which implies 
ikz ̀2h⊥e

τ⊥ = 
2h⊥ cos k0 ` − i(1 + h2 ) sin k0 ` z ⊥ z 

−i(1 − h2 ) sin k0 ` 
R⊥ = ⊥ z 

2h⊥ cos k0 ` − i(1 + h2 ) sin k0 ` z ⊥ z 

The fraction of the reflected intensity is 

(1 − h2 )2 sin2 k0 ` ⊥ z|R⊥|2 = 
⊥ cos2 k0 ` + (1 + h2 )2 sin2 k0 `4h2 

z ⊥ z 

2 
Now, do the same analysis for the polarization in the x-z plane. Find 

¯̄
¯Rk 

¯̄
¯ . What 

happens at Brewster’s angle? 

12.2. Consider a boundary at x = 0 between two regions of empty space. On the 
boundary surface at x = 0, there is a thin layer of stuff with surface conductivity σ. That 

~means that an electric field, E, with a component parallel to the surface (in the y-z plane) 
produces a surface current density in the boundary layer: 

~J (y, z) = (0, σ Ey(0, y, z), σ Ez(0, y, z)) . 

In this system, there is an electric field of the form shown below: 

x cos θ0+k0y sin θ0−ωt)Ez(x, y, t) = Aei(kx cos θ+ky sin θ−ωt) + R Aei(−k0

for x < 0, and 
x cos θ00+k00y sin θ00−ωt)Ez(x, y, t) = T Aei(k00

for x > 0. Ex and Ey vanish everywhere. 
, k00Find k0 , θ0 and θ00 . Find T in terms of R. Find the current density on the boundary, 

~J (y, z). Find the magnetic field everywhere. Find R. 
Check your result for R by explaining the limit σ →∞, a superconducting surface. What 

happens to R in this limit and why? 
~Hint: Use Maxwell’s equations to find B and then look at the discontinuity of the mag-

netic field across the surface current. 
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12.3. Suppose that on the planes z = 0 and z = a for x ≥ 0, there are two flat 
semi-infinite conducting planes. Suppose, further, that the oscillation of the system is forced 
by some device that produces an electric field in the x = 0 plane for 0 ≤ z ≤ a with 

~the following properties: E points in the y direction but its y-component is independent of 
y and equal to E0 sin(3πz/a) cos(ωt), where ω > 3πc/a and c is the speed of light in 
vacuum. If this produces a traveling wave in the +x direction, find the form of the electric 
field everywhere between the plates. If this traveling wave is used as a carrier wave for 
amplitude modulated signals, with what speed does the signal travel? 

12.4. Consider the standing electromagnetic waves in a cubical evacuated box with 
perfectly conducting sides at x = 0, x = L, y = 0, y = L, z = 0 and z = L. There exist 
modes in which the electric and magnetic fields vanish outside the box, and inside take the 
following form: 

Ez(x, y, z, t) = Aω sin kxx sin kyy cos ωt 

Bx(x, y, z, t) = −Aky sin kxx cos kyy sin ωt 

By(x, y, z, t) = Akx cos kxx sin kyy sin ωt 

Ex = Ey = Bz = 0 . 

You can check that inside the box and for properly chosen ω, these satisfy Maxwell’s equa-
tions, 

∂B~~ ~r× E = − ,
∂t 

∂E~~ ~ ~r× B = µ0²0 + µ0J , 
∂t 

~ ~ ~ ~r · E = ρ , r · B = 0 . 

Find ω as a function of kx and ky. 
There are no charges or currents inside the box, but there will be charges and currents built 

up on the boundary to confine the electric and magnetic fields inside the box. For example, a 
nonzero surface charge density appears on the top (z = L) and bottom (z = 0). The charges 
oscillate back and forth from top to bottom while nonzero surface current densities appear 
on all sides. The form above is constructed to satisfy appropriate boundary conditions on the 
four sides x = 0, y = 0, z = 0 and z = L. 

~Explain the physics of the boundary conditions for the E field on the sides x = L and 
y = L and find the allowed values of kx and ky. Then explain the physics of the boundary 

~conditions for the E field on the sides x = L and y = L adn draw a diagram to explain what 
is going on for the lowest possible values of kx and ky. Hint: Remember that the magnetic 
field vanishes outside the box. 



PROBLEMS 367 

12.5. A plane wave of light traveling in the +z direction is polarized at an angle θ from 
the x axis in the x − y plane. When it encounters a sheet of polaroid in the z = L plane that 
transmits only light polarized and an angle θ + π , the wave is completely absorbed. However, 2 
if the plane wave first passes through a sheet of cellophane in the z = 0 plane with the “fast 
axis” along x axis, some of the light gets through. Suppose that the cellophane introduces a 
phase difference of φ between the component of the light wave polarized along the fast (x) 
axis and the component polarized along the slow (y) axis. Find the ratio of the intensity of 
the transmitted wave beyond the polaroid to the incoming wave intensity as a function of θ 
and φ. Hint: Does your answer go to zero as φ → 0? What happens as θ → 0? 

12.6. A plane wave of light traveling in the +z direction is polarized in the x direction. 
When it encounters a sheet of polaroid in the z = L plane that transmits only y polarized 
light, the wave is completely absorbed. However, if the plane wave first passes through a 
sheet of cellophane in the z = 0 plane with the “fast axis” at an angle θ with the x axis, 
some of the light get through. Suppose that the cellophane introduces a phase difference of 
φ between a wave polarized along the fast axis and one polarized along the slow axis. Find 
the ratio of the intensity of the transmitted wave beyond the polaroid to the incoming wave 
intensity as a function of θ and φ. 

Compare the result with the previous problem and explain what is going on. 

12.7. Suppose that a charge Q is stationary at the origin until t = 0. From time t = 0 to 
t = ¢t, the charge experiences uniform acceleration a x̂. 

a. Use (12.102) to find an approximate expression for the electric field at a large distance 
r À a¢t2 from the origin. 

b. How does this compare with what you see in the animation PURCELL? 
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