
Chapter 2 

Forced Oscillation and Resonance 

The forced oscillation problem will be crucial to our understanding of wave phenomena. 
Complex exponentials are even more useful for the discussion of damping and forced oscil-
lations. They will help us to discuss forced oscillations without getting lost in algebra. 

Preview 

In this chapter, we apply the tools of complex exponentials and time translation invariance to 
deal with damped oscillation and the important physical phenomenon of resonance in single 
oscillators. 

1. We set up and solve (using complex exponentials) the equation of motion for a damped 
harmonic oscillator in the overdamped, underdamped and critically damped regions. 

2. We set up the equation of motion for the damped and forced harmonic oscillator. 

3. We study the solution, which exhibits a resonance when the forcing frequency equals 
the free oscillation frequency of the corresponding undamped oscillator. 

4. We study in detail a specific system of a mass on a spring in a viscous fluid. We give a 
physical explanation of the phase relation between the forcing term and the damping. 

2.1 Damped Oscillators 

Consider first the free oscillation of a damped oscillator. This could be, for example, a system 
of a block attached to a spring, like that shown in figure 1.1, but with the whole system 
immersed in a viscous fluid. Then in addition to the restoring force from the spring, the block 
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experiences a frictional force. For small velocities, the frictional force can be taken to have 
the form 

− m¡v , (2.1) 

where ¡ is a constant. Notice that because we have extracted the factor of the mass of the 
block in (2.1), 1/¡ has the dimensions of time. We can write the equation of motion of the 
system as 

d2 

x(t) + ¡ 
d

x(t) + ω0
2 x(t) = 0 , (2.2)

dt2 dt 

where ω0 = 
p

K/m. This equation is linear and time translation invariant, like the undamped 
equation of motion. In fact, it is just the form that we analyzed in the previous chapter, in 
(1.16). As before, we allow for the possibility of complex solutions to the same equation, 

d2 d 
z(t) + ¡ z(t) + ω0

2 z(t) = 0 . (2.3)
dt2 dt 

Because (1.71) is satisfied, we know from the arguments of of chapter 1 that we can find 
irreducible solutions of the form 

αt z(t) = e , (2.4) 

where α (Greek letter alpha) is a constant. Putting (2.4) into (2.2), we find 

(α2 + ¡α + ω2) e αt = 0 . (2.5)0 

Because the exponential never vanishes, the quantity in parentheses must be zero, thus 

¡ 
s 

¡2 
α = − ± − ω0

2 . (2.6)
2 4 

From (2.6), we see that there are three regions for ¡ compared to ω0 that lead to different 
physics. 

2.1.1 Overdamped Oscillators 

If ¡/2 > ω0, both solutions for α are real and negative. The solution to (2.2) is a sum of de-
creasing exponentials. Any initial displacement of the system dies away with no oscillation. 
This is an overdamped oscillator. 

The general solution in the overdamped case has the form, 

x(t) = z(t) = A+e −¡+t + A−e −¡−t , (2.7) 

where 
¡ 

s 
¡2 

¡± = ± − ω0
2 . (2.8)

2 4 
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t = 0 t → t = 10 s 

Figure 2.1: Solutions to the equation of motion for an overdamped oscillator. 

−1An example is shown in figure 2.1. The dotted line is e−¡+t for ¡ = 1 s−1 and ω0 = .4 s . 
−¡+t − 1 −¡−tThe dashed line is e−¡−t. The solid line is a linear combination, e e .2 

In the overdamped situation, there is really no oscillation. If the mass is initially moving 
very fast toward the equilibrium position, it can overshoot, as shown in figure 2.1. However, 
it then moves exponentially back toward the equilibrium position, without ever crossing the 
equilibrium value of the displacement a second time. Thus in the free motion of an over-
damped oscillator, the equilibrium position is crossed either zero or one times. 

2.1.2 Underdamped Oscillators 

If ¡/2 < ω0, the expression inside the square root is negative, and the solutions for α are a 
complex conjugate pair, with negative real part. Thus the solutions are products of a decreas-
ing exponential, e−¡t/2, times complex exponentials (or sines and cosines) e±iωt, where 

ω2 = ω0
2 − ¡2/4 . (2.9) 

This is an underdamped oscillator. 
Most of the systems that we think of as oscillators are underdamped. For example, a 

system of a child sitting still on a playground swing is an underdamped pendulum that can 
oscillate many times before frictional forces bring it to rest. 

−¡t/2The decaying exponential e e−i(ωt−θ) spirals in toward the origin in the complex 
plane. Its real part, e−¡t/2 cos(ωt − θ), describes a function that oscillates with decreasing 
amplitude. In real form, the general solution for the underdamped case has the form, 

x(t) = Ae−¡t/2 cos(ωt − θ) , (2.10) 

or 
x(t) = e −¡t/2 (c cos(ωt) + d sin(ωt)) , (2.11) 
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where A and θ are related to c and d by (1.97) and (1.98). This is shown in figure 2.2 (to be 
−¡t/2 −i(ωt−θ)compared with figure 1.9). The upper figure shows the complex plane with e e

plotted for equally spaced values of t. The lower figure is the real part, cos(ωt − θ) →, for 
the same values of t plotted versus t. In the underdamped case, the equilibrium position is 
crossed an infinite number of times, although with exponentially decreasing amplitude! 

6 −¡t/2 −i(ωt−θ)q e eq
¯ q
¯q q q q qq q q 

q 
¯ qq qq θq ¯ qq -
q qqq qq qq q qq qq q q q 

cos(ωt − θ) → 
q -q q qt qqq↓ qqqqqqqqqqqq q q q q q q q q qqqqqqqq

? 

Figure 2.2: A damped complex exponential. 
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2.1.3 Critically Damped Oscillators 
−¡t/2If ¡/2 = ω0, then (2.4), gives only one solution, e . We know that there will be two 

solutions to the second order differential equation, (2.2). One way to find the other solution 
is to approach this situation from the underdamped case as a limit. If we write the solutions 
to the underdamped case in real form, they are e−¡t/2 cos ωt and e−¡t/2 sin ωt. Taking the 
limit of the first as ω → 0 gives e−¡t/2, the solution we already know. Taking the limit of 
the second gives 0. However, if we first divide the second solution by ω, it is still a solution 
because ω does not depend on t. Now we can get a nonzero limit: 

1 −¡t/2lim e −¡t/2 sin ωt = t e . (2.12)
ω→0 ω 

Thus t e−¡t/2 is also a solution. You can also check this explicitly, by inserting it back 
into (2.2). This is called the critically damped case because it is the boundary between 
overdamping and underdamping. 

A familiar system that is close to critical damping is the combination of springs and shock 
absorbers in an automobile. Here the damping must be large enough to prevent the car from 
bouncing. But if the damping from the shocks is too high, the car will not be able to respond 
quickly to bumps and the ride will be rough. 

The general solution in the critically damped case is thus 

c e −¡t/2 + d t e−¡t/2 . (2.13) 

−1This is illustrated in figure 2.3. The dotted line is e−¡t for ¡ = 1 s . The dashed line is 
t e−¡t. The solid line is a linear combination, (1 − t) e−¡t . 
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Figure 2.3: Solutions to the equation of motion for a critically damped oscillator. 

As in the overdamped situation, there is no real oscillation for critical damping. However, 
again, the mass can overshoot and then go smoothly back toward the equilibrium position, 



42 CHAPTER 2. FORCED OSCILLATION AND RESONANCE 

without ever crossing the equilibrium value of the displacement a second time. As for over-
damping, the equilibrium position is crossed either once or not at all. 

2.2 Forced Oscillations 

The damped oscillator with a harmonic driving force, has the equation of motion 

d2 d 
x(t) + ¡ x(t) + ω0

2 x(t) = F (t)/m , (2.14)
dt2 dt 

where the force is 
F (t) = F0 cos ωdt . (2.15) 

The ωd/2π is called the driving frequency. Notice that it is not necessarily the same as the 
natural frequency, ω0/2π, nor is it the oscillation frequency of the free system, (2.9). It is 
simply the frequency of the external force. It can be tuned completely independently of the 
other parameters of the system. It would be correct but awkward to refer to ωd as the driving 
angular frequency. We will simply call it the driving frequency, ignoring its angular character. 

The angular frequencies, ωd and ω0, appear in the equation of motion, (2.15), in com-
pletely different ways. You must keep the distinction in mind to understand forced oscilla-
tion. The natural angular frequency of the system, ω0, is some combination of the masses 
and spring constants (or whatever relevant physical quantities determine the free oscillations). 
The angular frequency, ωd, enters only through the time dependence of the driving force. This 
is the new aspect of forced oscillation. To exploit this new aspect fully, we will look for a 
solution to the equation of motion that oscillates with the same angular frequency, ωd, as the 
driving force. 

We can relate (2.14) to an equation of motion with a complex driving force 

d2 d 
z(t) + ¡ z(t) + ω0

2 z(t) = F(t)/m , (2.16)
dt2 dt 

where 
−iωdtF(t) = F0e . (2.17) 

This works because the equation of motion, (2.14), does not involve i explicitly and because 

Re F(t) = F (t) . (2.18) 

If z(t) is a solution to (2.16), then you can prove that x(t) = Re z(t) is a solution (2.14) by 
taking the real part of both sides of (2.16). 

The advantage to the complex exponential force, in (2.16), is that it is irreducible, it 
behaves simply under time translations. In particular, we can find a steady state solution 
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proportional to the driving force, e−iωdt, whereas for the real driving force, the cos ωdt and 
sin ωdt forms get mixed up. That is, we look for a steady state solution of the form 

−iωdt z(t) = A e . (2.19) 

The steady state solution, (2.19), is a particular solution, not the most general solution to 
(2.16). As discussed in chapter 1, the most general solution of (2.16) is obtained by adding 
to the particular solution the most general solution for the free motion of the same oscillator 
(solutions of (2.3)). In general we will have to include these more general contributions to 
satisfy the initial conditions. However, as we have seen above, all of these solutions die away 
exponentially with time. They are what are called “transient” solutions. It is only the steady 
state solution that survives for a long time in the presence of damping. Unlike the solutions to 
the free equation of motion, the steady state solution has nothing to do with the initial values 
of the displacement and velocity. It is determined entirely by the driving force, (2.17). You 
will explore the transient solutions in problem (2.4). 

Putting (2.19) and (2.17) into (2.16) and cancelling a factor of e−iωdt from each side of 
the resulting equation, we get 

F0(−ωd 
2 − i¡ωd + ω2) A = , (2.20)0 m 

or 
F0/mA = . (2.21)

ω2 − i¡ωd − ω2 
0 d 

Notice that we got the solution just using algebra. This is the advantage of starting with 
the irreducible solution, (2.19). 

The amplitude, (2.21), of the displacement is proportional to the amplitude of the driving 
force. This is just what we expect from linearity (see problem (2.2)). But the coefficient of 
proportionality is complex. To see what it looks like explicitly, multiply the numerator and 
denominator of the right-hand side of (2.21) by ω0

2 + i¡ωd − ω2, to get the complex numbers d

into the numerator ¡
ω0

2 + i¡ωd − ω2
¢ 
F0/mdA = . (2.22)¢2¡

ω2 − ω2 + ¡2ω2 
0 d d 

The complex number A can be written as A + iB, with A and B real: 
¡
ω0

2 − ω2
¢ 
F0/mdA = ; (2.23)¢2¡

ω2 − ω2 + ¡2ω2 
0 d d 

¡ωd F0/m
B = . (2.24)¡

ω2 − ω2
¢2 + ¡2ω2 

0 d d 
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Then the solution to the equation of motion for the real driving force, (2.14), is 

x(t) = Re z(t) = Re 
³ 
Ae −iωdt ́

 
= A cos ωdt + B sin ωdt . (2.25) 

Thus the solution for the real force is a sum of two terms. The term proportional to A is in 
phase with the driving force (or 180◦ out of phase), while the term proportional to B is 90◦ 

out of phase. The advantage of going to the complex driving force is that it allows us to get 
both at once. The coefficients, A and B, are shown in the graph in figure 2.4 for ¡ = ω0/2. 

F0 
mω0

2 

0 

Figure 2.4: The elastic and absorptive amplitudes, plotted versus ωd. The absorptive ampli-
tude is the dotted line. 

The real part of A, A = Re A, is called the elastic amplitude and the imaginary part 
of A, B = Im A, is called the absorptive amplitude. The reason for these names will 
become apparent below, when we consider the work done by the driving force. 

2.3 Resonance 
¢2The 

¡
ω0

2 − ω2 term in the denominator of (2.22) goes to zero for ωd = ω0. If the dampingd

is small, this behavior of the denominator gives rise to a huge increase in the response of the 
system to the driving force at ωd = ω0. The phenomenon is called resonance. The angular 
frequency ω0 is the resonant angular frequency. When ωd = ω0, the system is said to be “on 
resonance”. 

The phenomenon of resonance is both familiar and spectacularly important. It is familiar 
in situations as simple as building up a large amplitude in a child’s swing by supplying a 
small force at the same time in each cycle. Yet simple as it is, it is crucial in many devices 
and many delicate experiments in physics. Resonance phenomena are used ubiquitously to 
build up a large, measurable response to a very small disturbance. 

A 

B 

.................................................
.....................

.................
................

................
..................................................................................................................................................................................................................................................................................................................

...............
..............
...............

.................
....................

........................
..... 

.....
....

....
...

...
...
.. 
. . 
. . 
. . 
. . 
. . 
. . 
. . 
. . 
. . 
. . 
. .
..
. . 
. . 
. . 
. . 
. . 
. . 
......... . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . ...................... 

0 ωd → ω0 2ω0 



45 2.3. RESONANCE 

Very often, we will ignore damping in forced oscillations. Near a resonance, this is not a 
good idea, because the amplitude, (2.22), goes to infinity as ¡ → 0 for ωd = ω0. Infinities 
are not physical. This infinity never occurs in practice. One of two things happen before the 
amplitude blows up. Either the damping eventually cannot be ignored, so the response looks 
like (2.22) for nonzero ¡, or the amplitude gets so large that the nonlinearities in the system 
cannot be ignored, so the equation of motion no longer looks like (2.16). 

2.3.1 Work 

It is instructive to consider the work done by the external force in (2.16). To do this we must 
use the real force, (2.14), and the real displacement (2.25), rather than their complex 
extensions, because, unlike almost everything else we talk about, the work is a nonlinear 
function of the force. The power expended by the force is the product of the driving force 
and the velocity, 

P (t) = F (t) 
∂

x(t) = −F0ωdA cos ωdt sin ωdt + F0ωdB cos2 ωdt . (2.26)
∂t 

The first term in (2.26) is proportional to sin 2ωdt. Thus it is sometimes positive and 
sometimes negative. It averages to zero over any complete half-period of oscillation, a time 
π/ωd, because Z t0+π/ωd 1 t0+π/ωddt sin 2ωdt = − cos 2ωdt| = 0 . (2.27)t0 

t0 2 
This is why A is called the elastic amplitude. If A dominates, then energy fed into the system 
at one time is returned at a later time, as in an elastic collision in mechanics. 

The second term in (2.26), on the other hand, is always positive. It averages to 

1 
Paverage = F0ωdB . (2.28)

2
This is why B is called the absorptive amplitude. It measures how fast energy is absorbed by 
the system. The absorbed power, Paverage, reaches a maximum on resonance, at ω0 = ωd. 
This is a diagnostic that is often used to find resonances in experimental situations. Note that 
the dependence of B on ωd looks qualitatively similar to that of Paverage, which is shown in 
figure 2.5 for ¡ = ω0/2. However, they differ by a factor of ωd. In particular, the maximum 
of B occurs slightly below resonance. 

2.3.2 Resonance Width and Lifetime 

Both the height and the width of the resonance curve in figure 2.5 are determined by the 
frictional term, ¡, in the equation of motion. The maximum average power is inversely 
proportional to ¡, 

F 2 
0 . (2.29)

2m¡ 
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Paverage 

0 

Figure 2.5: The average power lost to the frictional force as a function of ωd for ¡ = ω0/2. 

The width (for fixed height) is determined by the ratio of ¡ to ω0. In fact, you can check that 
the values of ωd for which the average power loss is half its maximum value are 

s 
¡2 ¡

= ω2 + ± . (2.30)ω1/2 0 4 2 

The ¡ is the “full width at half-maximum” of the power curve. In figure 2.6 and figure 2.7, we 
show the average power as a function of ωd for ¡ = ω0/4 and ¡ = ω0. The linear dependence 
of the width on ¡ is clearly visible. The dotted lines show the position of half-maximum. 
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Figure 2.6: The average power lost to the frictional force as a function of ωd for ¡ = ω0/4. 
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0 ωd → ω0 2ω0 

Figure 2.7: The average power lost to the frictional force as a function of ωd for ¡ = ω0. 

This relation is even more interesting in view of the relationship between ¡ and the time 
dependence of the free oscillation. The lifetime of the state in free oscillation is of order 1/¡. 
In other words, the width of the resonance peak in forced oscillation is inversely proportional 
to the lifetime of the corresponding normal mode of free oscillation. This inverse relation 
is important in many fields of physics. An extreme example is particle physics, where very 
short-lived particles can be described as resonances. The quantum mechanical waves associ-
ated with these particles have angular frequencies proportional to their energies, 

E = h̄ω (2.31) 

where ̄h is Planck’s constant divided by 2π, 

¯ (2.32)h ≈ 6.626 × 10−34 J s . 

The lifetimes of these particles, some as short as 10−24 seconds, are far too short to measure 
directly. However, the short lifetime shows up in the large width of the distribution of energies 
of these states. That is how the lifetimes are actually inferred. 

2.3.3 Phase Lag 

We can also write (2.25) as 
x(t) = R cos(ωdt − θ) (2.33) 

for 
R = 

p
A2 + B2 , θ = arg(A + iB) . (2.34) 
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The phase angle, θ, measures the phase lag between the external force and the system’s 
response. The actual time lag is θ/ωd. The displacement reaches its maximum a time θ/ωd 

after the force reaches its maximum. 
Note that as the frequency increases, θ increases and the motion lags farther and farther 

behind the external force. The phase angle, θ, is determined by the relative importance of the 
restoring force and the inertia of the oscillator. At low frequencies (compared to ω0), inertia 
(an imprecise word for the ma term in the equation of motion) is almost irrelevant because 
things are moving very slowly, and the motion is very nearly in phase with the force. Far 
beyond resonance, the inertia dominates. The mass can no longer keep up with the restoring 
force and the motion is nearly 180◦ out of phase with the force. We will work out a detailed 
example of this in the next section. 

The phase lag goes through π/2 at resonance, as shown in the graph in figure 2.8 for 
¡ = ω0/2. A phase lag of π/2 is another frequently used diagnostic for resonance. 
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Figure 2.8: A plot of the phase lag versus frequency in a damped forced oscillator. 

2.4 An Example 

2.4.1 Feeling It In Your Bones 

2-1.... . 

We will discuss the physics of forced oscillations further in the context of the simple system 
shown in figure 2.9. The block has mass m. The block moves in a viscous fluid that provides 
a frictional force. We will imagine that the fluid is something like a thick silicone oil, so that 
the steady state solution is reached very quickly. The block is attached to a cord that runs 
over a pulley and is attached to a spring, as shown. The spring has spring constant K. You 

.......................
........
..............................................................................
........
............................................................................................................................................. ... 
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Figure 2.9: An oscillator that is damped by moving in a viscous fluid. 

hold on to the other end of the spring and move it back and forth with displacement 

d0 cos ωdt . (2.35) 

In this arrangement, you don’t have to be in the viscous fluid with the block — this makes it 
a lot easier to breathe. 

The question is, how does the block move? This system actually has exactly the equation 
of motion of the forced, damped oscillator. To see this, note that the change in the length of 
the spring from its equilibrium length is the difference, 

x(t) − d0 cos ωdt . (2.36) 

Thus the equation motion looks like this: 

m 
d2 

dt2 x(t) + m¡ 
d 
dt 

x(t) = −K [x(t) − d0 cos ωdt] . (2.37) 

Dividing by m and rearranging terms, you can see that this is identical to (2.14) with 

F0/m = K d0/m = ω2 
0d0 . (2.38) 

Moving the other end of the spring sinusoidally effectively produces a sinusoidally varying 
force on the mass. 

Now we will go over the solution again, stressing the physics of this system as we go. 
Try to imagine yourself actually doing the experiment! It will help to try to feel the forces 
involved in your bones. It may help to check out program 2-1 on the supplementary programs 
disk. This allows you to see the effect, but you should really try to feel it! 
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The first step is to go over to the complex force, as in (2.16). The result looks like 

inertial frictional spring driving z }| { z }| { z }| { z }| {
d2 d −iωdt z(t)+ ¡ z(t)+ ω0

2 z(t) = ω0
2d0 e . (2.39)

dt2 dt 

We have labeled the terms in (2.39) to remind you of their different physical origins. 
The next step is to look for irreducible steady state solutions of the form of (2.19): 

−iωdt z(t) = A e . (2.40) 

Inserting (2.40) into (2.39), we get 

−iωdt −iωdt
h
−ωd 

2 − i¡ωd + ω2
i 
A e = ω0

2d0 e (2.41)0 . 

What we will discuss in detail is the phase of the quantity in square brackets on the left-
hand side of (2.41). Each of the three terms, inertial, frictional and spring, has a different 
phase. Each term also depends on the angular frequency, ωd in a different way. The phase of 
A depends on which term dominates. 

For very small ωd, in particular for 

ωd ¿ ω0, ¡ , (2.42) 

the spring term dominates the sum. Then A is in phase with the driving force. This has a 
simple physical interpretation. If you move the end of the spring slowly enough, both friction 
and inertia are irrelevant. When the block is moving very slowly, a vanishingly small force 
is required. The block just follows along with the displacement of the end of the spring, 
A ≈ d0. You should be able to feel this dependence in your bones. If you move your hand 
very slowly, the mass has no trouble keeping up with you. 

For very large ωd, that is for 
ωd À ω0, ¡ , (2.43) 

the inertial term dominates the sum. The displacement is then 180◦ out of phase with the 
driving force. It also gets smaller and smaller as ωd increases, going like 

ω2 
0A ≈ − d0 . (2.44)

ω2 
d 

Again, this makes sense physically. When the angular frequency of the driving force gets 
very large, the mass just doesn’t have time to move. 

In between, at least two of the three terms on the left-hand side of (2.41) contribute 
significantly to the sum. At resonance, the inertial term exactly cancels the spring term, 
leaving only the frictional term, so that the displacement is 90◦ out of phase with the driving 
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force. The size of the damping force determines how sharp the resonance is. If ¡ is much 
smaller than ω0, then the cancellation between the inertial and spring terms in (2.39) must 
be very precise in order for the frictional term to dominate. In this case, the resonance is 
very sharp. On the other hand, if ¡ À ω0, the resonance is very broad, and the enhancement 
at resonance is not very large, because the frictional term dominates for a large range of ωd 

around the point of resonance, ωd = ω0. 
Try it! There is no substitute for actually doing this experiment. It will really give you 

a feel for what resonance is all about. Start by moving your hand at a very low frequency, 
so that the block stays in phase with the motion of your hand. Then very gradually increase 
the frequency. If you change the frequency slowly enough, the contributions from the tran-
sient free oscillation will be small, and you will stay near the steady state solution. As the 
frequency increases, you will first see that because of friction, the block starts to lag behind 
your hand. As you go through resonance, this lag will increase and go through 90◦. Finally at 
very high frequency, the block will be 180◦ out of phase with your hand and its displacement 
(the amplitude of its motion) will be very small. 

Chapter Checklist 

You should now be able to: 

1. Solve for the free motion of the damped harmonic oscillator by looking for the irre-
ducible complex exponential solutions; 

2. Find the steady state solution for the damped harmonic oscillator with a harmonic 
driving term by studying a corresponding problem with a complex exponential force 
and finding the irreducible complex exponential solution; 

3. Calculate the power lost to frictional forces and the phase lag in the forced harmonic 
oscillator; 

4. Feel it in your bones! 

Problems 

2.1. Prove that an overdamped oscillator can cross its equilibrium position at most once. 

2.2. Prove, just using linearity, without using the explicit solution, that the steady state 
solution to (2.16) must be proportional to F0. 
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2.3. For the system with equation of motion (2.14), suppose that the driving force has 
the form 

f0 cos ω0t cos δt 

where 
δ ¿ ω0 and ¡ = 0 . 

As δ → 0, this goes on resonance. What is the displacement for δ nonzero to leading order 
in δ/ω0? Write the result in the form 

α(t) cos ω0t + β(t) sin ω0t 

and find α(t) and β(t). Discuss the physics of this result. Hint: First show that 

1 
cos ω0t cos δt = Re 

³ 
e −i(ω0+δ)t + e −i(ω0−δ)t ́

 
.

2 

2.4. For the system shown in figure 2.9, suppose that the displacement of the end of the 
wire vanishes for t < 0, and has the form 

d0 sin ωdt for t ≥ 0 . 

a. Find the displacement of the block for t > 0. Write the solution as the real part of 
complex solution, by using a complex force and exponential solutions. Do not try to simplify 
the complex numbers. Hint: Use (2.23), (2.24) and (2.6). If you get confused, go on to part 
b. 

b. Find the solution when ¡ → 0 and simplify the result. Even if you got confused by 
the complex numbers in a., you should be able to find the solution in this limit. When there 
is no damping, the “transient” solutions do not die away with time! 

2.5. For the LC circuit shown in figure 1.10, suppose that the inductor has nonzero re-
sistance, R. Write down the equation of motion for this system and find the relation between 
friction term, m¡, in the damped harmonic oscillator and the resistance, R, that completes the 
correspondence of (1.105). Suppose that the capacitors have capacitance, C ≈ 0.00667µF , 
the inductor has inductance, L ≈ 150µH and the resistance, R ≈ 15�. Solve the equation 
of motion and evaluate the constants that appear in your solution in units of seconds. 
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