
8.04: Quantum Mechanics Professor Allan Adams
 
Massachusetts Institute of Technology February 5, 2013
 

Problem Set 1 

Due Tuesday Feb 12 at 11.00AM 

Readings: 

E&R 1-(6,7) 2-(1,2,3,4,5) 3-(all) NOT 4-(all)!! 
Li. 1-(all) 2-(3,5,6) NOT 2-4!!! 
Ga. 1-(2,3,4) NOT 1-5!!! 
Sh. 3 

1. (15 points) Radiative collapse of a classical atom 

Suppose the world was actually governed by classical mechanics. In such a classical 
universe, we might try to build a Hydrogen atom by placing an electron in a circular 
orbit around a proton. However, we know from 8.03 that a non-relativistic, accelerating 
electric charge radiates energy at a rate given by the Larmor formula, 

dE 2 q2a2 

= − 
dt 3 c3 

(in cgs units) where q is the electric charge and a is the magnitude of the acceleration. 
So the classical atom has a stability problem. How big is this effect? 

(a) Show that the energy lost per revolution is small compared to the electron’s kinetic 
energy. Hence, it is an excellent approximation to regard the orbit as circular at 
any instant, even though the electron eventually spirals into the proton. 

◦ 

(b) Using the typical size of an atom (1 A) and a nucleus (1 fm), calculate how long 
it would take for the electron to spiral into the proton. 

◦ 

(c) Compare the velocity of the electron (assuming an orbital radius of 0.5 A) to the 
speed of light – will relativistic corrections materially alter your conclusions? 

(d) As the electron approaches the proton, what happens to its energy?	 Is there a 
minimum value of the energy the electron can have? 
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2.	 (25 points) Dimensional Analysis: Two Kinds of Quantum Gravity 

(a) Gravitational bound states 

Consider a particle sitting on a table which is kept from floating away only by the 
force of gravity. This system is characterized by just three physical parameters, 
the mass of the particle, m, the acceleration of gravity on Earth, g = 9.8 

s
m , and 2 

Planck’s constant, I = 
2
1 
π h. The energy given by E = 

2
1 mv2 + mgx. 

i. Using only dimensional analysis, find the product of powers of m, g, I which 
give a characteristic energy, E. (i.e., write E ∼ mαgβIγ and solve for α, β, γ) 
Can you find such a characteristic energy without using the Planck constant? 

ii. Repeat to find characteristic length, time, and speeds (l, t, v) for this system. 

iii. Classically, putting the system in its lowest energy configuration (E=0) would 
require the particle to sit perfectly still (v = 0) precisely on the surface 
(x = 0). Use the uncertainty relation, Δx Δp ≥ I

2 , to argue (briefly!) that 
the particle cannot have E = 0 while respecting the uncertainty principle. 

ASIDE: Quantum mechanically, then, there must be some minimum energy 
this system can have which cannot be predicted classically! For a particle on 
a table, this may not seem so important – but for Hydrogen, which you’ve just 
shown to be classically unstable, this is absolutely key. We will soon learn 
how to calculate the minimum (“ground state”) energy of such systems. 

iv. Use your dimensional analysis results to give a simple estimate for the ground 
state energy of this system. How does your estimate behave as h → 0? Does 
this make sense? Explain why or why not. 

v.	 Evaluate E, l, t and v numerically for a neutron (mN = 1.7·10−27kg). How 
high above the surface will the particle typically be found?1 

(b) The Planck Scale 

The scale at which gravity (characterized by the Newton constant, GN ), quantum 
mechanics (I), and relativity (c) are all important is called the Planck scale. 

i. Using dimensional analysis, find the combination of powers of GN , I and c 
which make a length – we call this the Planck length, LP . 

ii. Evaluate LP numerically, and compare to a typical scale for nuclear or particle 
physics, namely 1F = 10−15m. 

iii. Repeat to find the Planck mass, MP , evaluate it numerically, and compare to 
the mass of a typical nuclear constituent (like the proton mass). Do we need 
to understand Quantum Gravity to study nuclear physics? 

1This system has been studied experimentally using neutrons in: Quantum states of neurons in the 
Earth’s gravitational Field, V. V. Nesvizhevsky et al., Nature 415, 297 (2002). 

http://www.nature.com/nature/journal/v415/n6869/abs/415297a.html
http://www.nature.com/nature/journal/v415/n6869/abs/415297a.html
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3.	 (20 points) deBroglie Relations and the Scale of Quantum Effects 

(a) Light Waves as Particles 

The Photoelectric effect suggests that light of frequency ν can be regarded as 
consisting of photons of energy E = hν, where h = 6.63·10−27erg · s . 

i. Visible light has a wavelength in the range of 400-700	 nm. What are the 
energy and frequency of a photon of visible light? 

ii. The microwave in my kitchen operates at roughly 2.5 GHz at a max power 
of 7.5 · 109 erg . How many photons per second can it emit? What about a 

s 
low-power laser (104 erg at 633 nm), or a cell phone (4·106 erg at 850 MHz)? 

s	 s 

iii. How many such microwave photons does it take to warm a 200ml glass of 
water by 10◦C? (The heat capacity of water is roughly 4.18·107 erg .)

g ◦K 

iv. At a given power of an electromagnetic wave, do you expect a classical wave 
description to work better for radio frequencies, or for X-rays? 

(b) Matter Particles as Waves 

If a wavelength can be associated with every moving particle, then why are we not 
forcibly made aware of this property in our everyday experience? In answering, 
calculate the de Broglie wavelength λ = h

p of each of the following particles: 

i.	 an automobile of mass 2 metric tons (2000 kg) traveling at a speed of 50 mph 
(22 m

s ), 

ii.	 a marble of mass 10 g moving with a speed of 10 cm ,
s 

iii.	 a smoke particle of diameter 10−5cm and a density of, say, .2 
cm
g ) being 3 

jostled about by air molecules at room temperature (T =300K) (assume that 
the particle has the same translational kinetic energy as the thermal average 
of the air molecules, KE = 3 kB T , with kB = 1.38·10−16 erg ),

2	 ◦K 

iv.	 an 87Rb atom that has been laser cooled to a temperature of T = 100µK. 
Again, assume KE = 

2
3 kB T . 
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4. (15 points) Double-slit interference of electrons 

(a) Electrons of momentum p fall normally on a pair of slits separated by a distance 
d. What is the distance, w, between adjacent maxima of the interference fringe 
pattern formed on a screen a distance D beyond the slits? note: You may assume 
that the width of the slits is much less than the electron de Broglie wavelength. 

(b) In an experiment performed by Jönsson in 1961 (!!!), electrons were accelerated 
through a 50kV potential towards two slits separated by a distance d = 2 10−4cm, 
then detected on a screen D = 35cm beyond the slits. Calculate the electron’s 
de Broglie wavelength, λ, and the fringe spacing, w. 

(c) What values would d, D, and w take if Jönsson’s apparatus were simply scaled 
up for use with visible light rather than electrons? 

5. (15 points) Electron Diffraction 

(a) Watch the video on Matter Waves, 

http://tsgphysics.mit.edu/front/?page=demo.php&letnum=Z%2047 

(b) Explain, using diagrams and/or equations, why there are	 diagonal lines in the 
diffraction pattern which appears at (12:59) in the video. 

(c) In their classic experiment, Davisson and Germer (see paper) directed an electron 
beam into a nickel crystal at 90 degree incidence and placed a detector at an angle 
θ from the beam. When the electrons were accelerated by a voltage of 54 volts, 
they observed strong reflection or these electrons into an angle θ = 50◦ . Using 
the de Broglie relation and the Bragg relation, compute the lattice spacing in the 
nickel crystal. How does this to compare with the value (0.215 nm) measured by 
X-ray diffraction experiments? 

http://tsgphysics.mit.edu/front/?page=demo.php&letnum=Z%2047
http://prola.aps.org/abstract/PR/v30/i6/p705_1
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6. (15 points) Single-slit Diffraction and Uncertainty 

Visible light with a wavelength λ is incident from a distant source onto a single slit 
of width δx; denote the propagation direction as z, and the direction transverse to it 
with x. Assume δx is a few times larger than λ. 

(a) Estimate the width	 w of the pattern observed on a screen that is a distance 
D >> λ away (e.g., by assuming that the slit acts as a collection of emitters all 
oscillating in phase). 

(b) In the photon picture of light, the light beam	 after the slit comprises a large 
number of photons with a range of values of transverse momentum. Due to this 
range of propagation speeds in the x direction, different photons hit the screen at 
different spots. Using the knowledge of w, estimate the range of transverse values 
of momentum δpx , assuming δpx << p , where p is the photon momentum. 

(c) Since we know that each of the photons went through the slit, we have effectively 
measured the x-position of the photons at that point; the experimental uncer­
tainty associated with this particular measurement is δx. Since the momentum 
of the photons in the transverse direction is conserved between the time they go 
through the slit, and the time they hit the screen, we have effectively also mea­
sured the uncertainty in their transverse momentum values just after the slit to 
be δpx. Using the relation E = hν = hc/λ, together with the expression for the 
photon momentum E = pc, show δx · δpx ∼ h. 

ASIDE: This is a heuristic realization of the uncertainty relation, which lies at 
the heart of Quantum Mechanics. We will derive it in a number of (increasingly 
general) ways in the next few weeks. Note that, in the above, the uncertainty 
relation is a consequence of the wave nature of light (c.f. part (a) of the problem). 
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