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1. (5 points) Zero Point Energy in a Lattice 

Consider a particle of mass m in a lattice of delta function barriers of dimensionless 
strength go » 1, lattice spacing L, and total length D » L. Estimate the ground 
state energy and compare it to that of a particle confined to a box of width D. 

2. (5 points) Blinded by Science 

Diamond, with a band gap of 5.5eV , is a spectacular insulator: at room temperature, 
diamond sports roughly 10−44 times fewer electrons in its conduction band than silicon 
(bandgap 1.1eV ). Diamond is also famously, and expensively, translucent. What is 
the minimum frequency to which diamond is opaque? What kind of radiation is this 
(e.g. X-rays, radio, etc)? Curiously, some diamonds are tinted blue. Can you come up 
with a mechanism that would explain this observation? 

3. (5 points) The World is Full of Fermions... 

Consider a composite object such as the hydrogen atom. Will it behave as a boson or 
fermion? Argue in general that objects containing an even/odd number of fermions 
will behave as bosons/fermions. 
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4. (20 points) Identical Particles and Spooky Correlations 

Consider two variables, x1 and x2. A natural question is whether knowledge of one variable 
is predictive of the second variable. Such a predicitivity is called a correlation. In terms of 
expectation values, a natural measure of the correlation of the two variables is the correlator,  

(x1 −(x1)) (x2 −(x2))

This problem will explore the interplay between symmetry and correlation of variables. 

Suppose we carefully arrange two particles in a harmonic oscillator potential such that 
one is in the ground state φ0 and one is in the first excited state φ1. The following are 
three wavefunctions in which our two particles may find themselves, corresponding to 
distinguishable, bosonic (symmetric) and fermionic (anti-symmetric) particles: 

ψD(x1, x2) = φ0(x1)φ1(x2) 
1 

ψS (x1, x2) = √ (φ0(x1)φ1(x2) + φ0(x2)φ1(x1))
2 
1 

ψA(x1, x2) = √ (φ0(x1)φ1(x2) − φ0(x2)φ1(x1)) , 
2 

where     
1 2/2ρ2 2 x 2/2ρ2 

φ0(x) = √ e −x φ1(x) = √ e −x . 
ρ π ρ π ρ

(a) Verify that (x1) = 0 and (x2) = 0 in all three cases. 

(b) Compute the mean square distance in each of these states and verify that: 

ψS : ( (x1 − x2)2) = 1ρ2 

ψD : ( (x1 − x2)2) = 2ρ2 

ψA : ( (x1 − x2)2) = 3ρ2 

Give a physical interpretation to your results. Do the particles in these various 
states experience different forces? If so, explain why; if not, what is causing the 
particles to attract or repel? 

(c) Plot the probability density associated to each of the three wavefunctions as a 
function of x1 and x2. Do your plots reproduce your conclusion above? What do 
you see on the slice x1 = x2? 

(d) Suppose your lab partner places N identical bosons of mass µ in an infinite square 
well of width L, cooling them into the lowest allowed energy eigenstate. What 
is the wavefunction, Ψ(x1, . . . , xN ), of this lowest-energy state in terms of the 
single-particle states, ϕn(x), what is its energy, and what is the minimum energy 
you must add to the system to excite it into the next allowed energy eigenstate? 

(e) Repeat (d) for N identical fermions. Be careful to normalize your wavefunction. 
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5.	 (15 points) Meaning of the Crystal Momentum 

Consider an electron in a periodic potential with energy spectrum E(q) in a wavepacket 

n
1 ∂E(q)with crystal momentum nq propagating with the group velocity vg = 

∂q . 

(a) Suppose a force F acts upon our system. Use elementary physics (like conservation 
of energy and the fact that E is a function of q) to show that 

d nq 
= F . 

dt 

This is the significance of the crystal momentum, nq: it is not the momentum of the 
electron, since the electron is not in a momentum eigenstate; however, the crystal mo­

mentum, nq, is the momentum which appears in the law of momentum conservation. 

(b) Let’s dig deeper – if nq is not the momentum of our electron, whose momentum 
is it? Suppose that this momentum is really the momentum of some particle-
like object in our system (let’s call it “the quasiparticle”) with some effective 
quasiparticle mass m∗ and group velocity vg. Use Newton’s law to show that 

1 1 d2E(q) 
= . 

m∗ n2 dq2 

Are the quasiparticles plain old electrons? If not, what are they? 

6.	 (15 points) The Group Velocity and Effective Mass 

Consider again our lattice of delta functions. 

(a) Sketch vg(qL) and m∗(qL) for |qL| < π in the first two bands. What happens to 
vg and m∗ near the top of each band? What about in the middle of the band? 

(b) Consider an electron at the bottom of an otherwise unoccupied band. Now accel­
erate it with a uniform external electric field, E . Show that the crystal momentum 
increases linearly in time. Qualitatively, what will happen to the energy E(q) and 
velocity vg(q) of the wavepacket as a function of time? How does your result 
fit with conservation of momentum, or the fact that metals (solids with unfilled 
bands) conduct in response to an EMF E? 
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7. (35 points) Transmission, Reflection and Bandgaps in 1d 

Band structure is intimately connected to scattering. As discussed in lecture, the 
existence of gaps is a consequence of destructive interference between waves reflected 
from distant wells in the lattice. In this problem we’ll further develop the connection 
between scattering and band structure in 1d by using the transmission and reflection 
coefficients of a single isolated potential to derive the band structure of a lattice of 
identical such potentials. Let’s start by looking at a single barrier in detail. 

Single Barrier Scattering 

Consider an arbitrary (but reasonable) potential barrier described by a symmetric 
function V (x) which is zero outside a region of width L centered on the origin, and 
varies in some simple but non-trivial way between x = −L/2 and x = +L/2. Now 
send a beam of particles of mass m and energy E = n2k2 

towards this barrier from 
2m 

the left. Outside the barrier, where the potential vanishes and the energy eigenvalue 
equation reduces to that of a free particle, φ takes the form,   

ikx + r e−ikx e x ≤ −L 

φ→(x) = t eikx L 
2 

x ≥ + .
2 

√ √ 
Here, t = Te−iϕ and r = ±i Re−iϕ are the familiar transmission and reflection 
amplitudes, T and R are the trans/reflection probabilities and ϕ is the phase shift. 
Similarly, sending particles in from the right at the same energy E gives,   

t e−ikx x ≤ −L 

φ←(x) = 2 
−ikx + r eikx L e x ≥ +

2

with the same t and r due to the symmetry of the potential, V (x) = V (−x). 

A general energy eigenfunction φE with energy E can then be expressed as a superpo­
sition of these two scattering solutions, 

φE (x) = A φ→(x) + B φ←(x) 

A Lattice of Identical Scatterers 

Now consider a lattice of such barriers. Bloch’s Theorem says that we can find energy 
eigenstates which satisfy the periodicity condition, 

iqLφE (x) .φE (x + L) = e

Taking a derivative with respect to x, this also implies 

iqLφ�φ� E (x + L) = e E (x) . 
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Meanwhile, from our study of the single well solutions above, we also know that 
φE (x) = A φ→(x)+B φ←(x), where φ→(x) and φ←(x) were constructed above. Requir­
ing that this form of φE satisfies the Bloch periodicity conditions at x = ±L/2 then 
gives an equation relating q and E (deriving this is good practice, but not required), 

t2 − r2 1ikL −ikL cos(qL) = e + e . 
2t 2t 

Where t and r are the transmission and reflection amplitudes of the single potential 
barrier constructed above. 

(a) Show that this condition on q and E, together with the definition of the scattering 
phase given above, leads to 

cos(kL − ϕ)
cos(qL) = √ 

T 

Aside: The band structure is thus completely determined by the transmission prob­
ability and the phase shift! This is another reason scattering information is so valuable 
– it encodes a great deal more than just “how likely is it i’ll tunnel through this wall?” 

(b) For V (x) a generic potential, explain why there are no solutions to the equation 
derived in part (a) in the regions around kL − ϕ = nπ, for any integer n. These 
are the gaps. What role does the scattering phase play in the band structure? 

(c) Suppose the barriers in V (x) are very weak. What does this imply about T , R 
and ϕ? Show that, in this limit, the energy gaps are very narrow, with the width 
of the gap around kL − ϕ = nπ given, approximately, by, 

√ 
ΔEgap ∝ R 

Sketch E(q) in this limit. 

(d) Supposed the barriers in V (x) are very strong. What does this imply about T , R 
and ϕ? Show that, in this limit, the allowed energy bands are very narrow, with 

√ 
ΔEband ∝ T 

Where are the allowed bands centered in this limit? Sketch E(q) in this limit. 
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(e) For V (x) a delta-function barrier with go > 0, use previous results (see Problem 
5 in Solution Set 7 where we studied transmission for a delta-function well of strength 
−Vo) to show1 that, 

2kL 2(ϕ)cot(ϕ) = T = cos 
go 

Use this result and your result from part (a) to reproduce the result derived in 
lecture for the periodic array of delta-function barriers, 

go
cos(qL) = cos(kL) + sin(kL) . 

2kL 

Verify that the results you found for a general potential in parts (b-d) obtain for 
this specific potential by making a precise plot (via Mathematica, Matlab, etc.) 
of E(q) in the limit go « 1 and go » 1. 

(f) Now consider a lattice of attractive delta functions with go < 0. Again plot E(q) 
for large and small magnitude of go. What has happened to the single bound 
state of the isolated attractive delta function? 

1The following trig identities are useful in this calculation:   b   1 
cos cot−1(b) = √ sin cot−1(b) = √ cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

1 + b2 1 + b2 



�
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8. (OPTIONAL) Standing Waves at the Band Edges 

Aside: The appearance of gaps in the spectrum of energy eigenvalues is a striking feature 
of the periodic potential. As we have seen, the widths of these gaps decrease to zero as the 
strength of the barriers between wells vanishes. Thus, the state at the top of one band and 
the state at the bottom of the next band become degenerate as the potential is turned off. 
Conversely, then, the periodic potential must break a degeneracy among two free particle 
states, with one state becoming higher energy than the other as the potential is turned on. In 
this problem we will explore this process by studying the states at band edges.  n2 goConsider the lattice of delta functions studied in lecture, V =

2m L δ(x − nL), and 
focus on the states at the edges of the bands with crystal momentum qL = Nπ. 

(a) The states at the edges of the allowed energy bands have qL = Nπ. Why? 

(b) Let’s start by thinking through the qualitative shape of the wavefunctions at the 
band edges, qL = Nπ. If we could turn off the potential, we would find two 
degenerate free-particle states, sin(qx) and cos(qx), both of which are periodic 
with period 2

N
L . Now imagine gradually turning on the potential. What does 

the delta function potential do to our two degenerate wavefunctions? Make a 
qualitative sketch of the resulting wavefunctions. Which of the two states becomes 
the top of a band, and which becomes the bottom of a band? What can you say 
about the higher-energy state in the limit go → ∞? 

(c) Now let’s check this picture.	 To begin, identify the boundary conditions which 
φE and φE must satisfy at x = 0. What periodicity condition must φE satisfy? 

(d) In the region 0	 < x < L, the potential is constant so φE can be written as a 
n2k2 

solution to the free particle equation, φE (x) = A sin(kx + θ), where E = 
2m and 

θ is a phase. Express the boundary conditions on φE as conditions on k and θ. 

(e) Show that half of solutions to these conditions are standing waves with kL = Nπ 
and θ = 0. Do these states appear at the top or bottom of their bands? 

(f) Show that the other half of the solutions satisfy: 

kL 2kL 
tan 

2 
= − 

go 
, 

when qL = (2M + 1)π and 

kL 2kL 
cot 

2 
= 

go 
, 

when qL = 2Mπ. Do these states appear at the top or the bottom of their bands? 

(g) What happens to the states at the band edges as you make the barriers strong, 
go → ∞? What happens to the width of the gap? Does this make sense? 

(h) What happens to the states at the band edges as you make the barriers weak, 
go → 0? What happens to the width of the gap? Does this make sense? 

( )

( )
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