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Problem 1. (15 points) Radiative collapse of a classical atom 

(a)	 (5 points) We begin by assuming that the orbit is circular. This seems like circular1 

logic, but is actually a fairly common technique in physics — what we’re trying to do 
here is to see if our assumptions are self-consistent. As we work through the problem, 
the math will tell us if we’re wrong and need to revise our starting point. 
The centripetal force keeping the electron in orbit around the proton is provided by 
Coulomb force. Thus, 
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where we have used c.g.s. units. The kinetic energy is given by the usual Newtonian 
formula: 

1	 q2 
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The problem asks us to compare this to the energy lost per orbit. The Larmor formula, 
on the other hand, gives us the energy lost per time, so we need to figure out the orbital 
period of the electron. Since we have assumed that the orbits are circular, we can also 
assume that the angular speed of the electron is constant. This means the time taken 
for one orbit is given by 
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The change in energy per orbit is therefore 
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where we have used the fact that the acceleration is centripetal, so a = v2/r. The ratio 
of the two energies is 

|ΔE| 8π v 3 
= « 1,	 (5)
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where the last inequality is true as long as the

 
 

 
electron is non-relativistic (i.e. as long 

as v « c), which we shall see in part c is indeed the case for our system. The energy 
lost is per orbit is thus negligible compared to the kinetic energy of the electron, and 
we can safely assume that the orbits are circular at any given instant. 

(b)	 (5 points) The Larmor formula gives the change in energy per time, whereas we’re 
interested in the change in radius. We therefore need to relate the energy to the radius: 

1Pun, admittedly, intended. 
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The fact that the total energy turned out to be such a simple function of radius after 
we inserted Equation 1 into the expression is not an accident — this turns out to be a 
simple case of what’s known as the virial theorem. Substituting this into the Larmor 
formula gives 
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where we have once again used the fact that a = v2/r. Once again, we can substitute 
Equation 1 into this, and after a little algebra one gets 
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We now proceed to solve the differential equation: 
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◦ 
Plugging   in ri = 1A and r 10

f = 1 fm gives a lifetime t0 of 1.1 × 10− seconds. Given 
that most of us have been around for more than that amount of time, this does not 
bode well for the classical model of the atom! 

2 ◦
(c) (3 points) From before, we have v =

this gives v = 2.3 × 108 cm/s. This is fairly

 
q . Plugging the initial value r = 0.5 A into
mr  

 small compared to the speed of light: 

v 2.3 ×  108 cm/s 
= = 0.0075 ≈ 1%. (10)

10
 

c 3 × 10  cm/s 

Since leading order relativistic corrections tend to be of order v2/c2, we can expect our 
non-relativistic analysis to  be accurate to one part in 104. This calculation also justifies 
the assumption we made in part (a). Note that the non-relativistic approximation 
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breaks down before the electron reaches the proton. Indeed, assuming that the electron 
remains non-relativistic all the way to rf , we would have 

vf = 

� 
q2	 v

 × 10  ⇒ f 
= 7.3 10 cm/s = 240% !! 

mrf	 c 

We can consider the non-relativistic approximation to be valid until the orbit becomes 
about  

◦ 
100 times smaller than the initial value 0.5 A, where the velocity becomes 10 

times bigger, and 
v ≈ 10% 
c 

so that  relativistic corrections are still small, being one part in 102. 
Those who are interested in how the leading order relativistic correction to this problem 
can be computed are encouraged to take a look at 

www.physics.princeton.edu/∼mcdonald/examples/orbitdecay.pdf 

The relativistic analysis requires not only a correction to the dynamical equations, but 
also to the Larmor formula. 

(d)	 (2 points) As the electron approaches the proton (r → 0), the energy approaches 
−∞, as we can see from Equation 6b. There is no minimum energy in this classical 
model, which is in contrast to the “real” quantum mechanical atom where there is a 
well-defined ground state. 
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Problem 2. (25 points) Dimensional Analysis: Two Kinds of Quantum Gravity 

(a) Gravitational bound states 

i.	 (3 points) In S.I. units, mass is measured in kg, gravitational acceleration in 
2  m/s , and Planck’s constant in J·s, which is equivalent to kg m2s−1. We wish to 

find the combination of mass, gravitational acceleration, and Planck’s constant 
that has units of gβ  energy. Writing E ∼ mα  Iγ, we have the following units: 

    kg m2 s −2 = kgα(m s−2)β(kg m2 s −1  β+2γ )γ = kgα+γ m s −2β−γ. (11) 

Equating the exponents gives 

1 = α + γ (12a) 
2 = β + 2γ (12b) 

−2 = −2β − γ. (12c) 

With three equations and three unknowns, we can solve for each exponent, giving 
α = 1/3, β = 2/3, and γ = 2/3. Thus, 

E  mg 2I2 
1 
3 ,  (13)  ∼

by dimensional analysis. A characteristic energy cannot be found if one does not 
use Planck’s constant, because this would be equivalent to setting γ = 0, and the 
resulting system of equations would have no solution. 

ii.	 (9 points) To get a characteristic length, time, and speed for this system, we can 
follow the same procedure as in the previous part, equating the exponents on the 
RHS of Equation 11 with appropriate values. This yields 
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iii.	 (2 points) Having the particle sit completely still would mean that there would 

be no uncertainty in its momentum (i.e. Δp = 0), and having it be precisely 
on the surface would mean no uncertainty in its position (i.e. Δx = 0). Having 
both Δp and Δx be zero is a clear violation of Heisenberg’s Uncertainty Principle, 
which says ΔxΔp ≥ I/2. 
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iv.	 (3 points) The energy of the system is given by E = K  + U = 1mv2 + x.
2  mg  

Plugging in the characteristic length l found in part (i) for x and the characteristic 
velocity found in part (ii) for v, we have 
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2 = mg 2I 3 ,  (15) 
2  2  m m2 g  2 

where the 3/2 prefactor can’t really be trusted, since dimensional estimates like 
this one can only be expected to be accurate to an order-of-magnitude. Note 
that it’s not entirely obvious that this energy is the ground state energy of the 
system. In other words, while our expression is definitely some characteristic 
energy of the system, it’s not clear that it’s the lowest energy. To see why our 
dimensional estimate represents the ground state, consider the following alternate 
derivation. If the system is in its lowest energy state, then we expect the position 
and momentum of the particle to be as low as possible without violating the 
uncertainty principle. Thus, we expect 

x · p ∼ I.	 (16) 

Since p = mv, we can substitute this into our expression for the energy: 

1 I 1 gI 
E = mv 2 + mg = mv 2 + .	 

2 

�(
(17)

p 

)�
2 v 

The ground state is by definition the minimum energy state, so we differentiate 
with respect to velocity, our only remaining free parameter:

1 
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which is the characteristic velocity we found before. Plugging this into our ex­
pression for the energy gives the same answer as we got in Equation 15. 
As I → 0, the predicted ground state energy also approaches zero. This is a 
mathematical statement of the fact that in classical mechanics, the lowest energy 
state of the system is one where the particle is sitting at rest on the surface. 

v.	 (1 point) Plugging in the  of a neutron (m ≈  mass 1.7  10−27 kg) gives E ≈ 
1.21 × 10−31 

×
J, l ≈   7.3× 10−6m, t ≈ 8.6 × 10−4 s, and v ≈ 8.5 × −3 10 m/s. We thus 

expect the particle to be typically be on the order of 10 µm above the surface. 

(b) The Planck Scale 

i.	 (3 points) The S.I. units for GN are kg−1m3s−2, the units for I are kgm2 s−1 , 
and units for c are ms−1 the . Repeating the same sort of analysis as we did for 
part (a), we have 

 3	 −2  −1  α  −1 β  2  −1 γ  −α+γ m = kg m s (m s ) (kgm s ) = kg m 3α+β+2γ −2α− −γ s β (19) 
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0 = −α + γ (20a) 
1 = 3α + β + 2γ (20b) 
0 = −2α − β − γ (20c) 

This gives α = 1/2, β = −3/2, and γ = 1/2, so the Planck length is given by 

GI 
LP	 ≡ 

 √
.  (21) 

c3

ii.	 (1 point) Inserting I = × 10−34 J s, G =  1.05 6.67  10−11kg−1 m3 s−2, and 
c = 3.00 × 108 

×
 m/s into Equation 21 gives LP = 1.62 × 10−35m. This is roughly 

20 orders of magnitude smaller than typical nuclear scales (∼ 1 fm). 
iii.	 (3 points) Following the same procedure gives 

Ic 
MP ≡ 

√ 
= 2.18 

G
× 10−8 kg.	 (22)

 

This is about 19 orders of magnitude larger than the proton mass (≈ 1.67 × 
10−27 kg). Given this and the answer to part (ii), we see that there is no need for 
a quantum theory of gravity if one’s goal is to study nuclear physics. 
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Problem 3. (20 points) deBroglie Relations and the Scale of Quantum Effects 

(a) Light Waves as Particles 

i.	 (3 points) To compute the frequency, we use the formula c = λν. Plugging in 
400 − 700 nm gives a frequency range of 4.28 × 1014  Hz to 7.49 × 1014Hz. The 
photon energy is computed using E  = hν, giving 2.84  10−19 J = 1.77 eV to 

 × −19 
×

4.97 10 J = 3.10 eV. 
ii.	 (2 points) At 2.5 GHz, each photon carries an energy of E = hν = 1.66 × 

10−17 ergs. If the microwave oven operates at a power of 7.5  109 erg/s, it must 
emit 7.5×109  66 17  

×
/1. ×10− = 4.53×1026 photons per second. Performing the same 

 for the  laser  calculations gives 3.19 × 1015 photons per second, and 7.10 × 1023
photons per second for the cell phone. 

iii.	 (3 points)A 200 ml glass of water has a mass of 0.2 kg, and to find the amount 
of energy needed to raise its temperature by 10 K, we can use the formula Q = 
mcV ΔT : 

 ergQ =  mc 7 10
V ΔT = (200 g)	 

�(
4.18 × 10

�)
(10K) = 8.36 × 10 ergs. (23)

gK 
27 Dividing by the energy per photon in the previous part tells us that 5.04 × 10

photons are required to heat up the water. 
iv.	 (2 points) X-rays are at a much high frequency than radio waves are, which 

means (according to E = hν) that an X-ray photon carries much more energy than 
a radio photon. Thus, an electromagnetic wave of a given power contains many 
more photons at radio frequencies than it would at X-ray frequencies. The radio 
wave is therefore more amenable to being described by a statistical description of 
photons (i.e. a classical description). This is why radio astronomers almost never 
have to use quantum mechanics, whereas X-ray astronomers use a photon descrip­
tion of light in their work. (However, see http://arxiv.org/abs/0801.0441 for 
an interesting twist on this in the context of some recent radio astronomy re­
search). 

(b) Matter Particles as Waves 

i.	 (2 points) λ  = h/p = 1.48 × 10−38m. 
  ii.	 (2 points) λ = h/p = 6.63 × 10−31m. 

iii.	 (2 points) Model

 hus m  4 is t = π
3

 
a typical molecule
substituted into

( 
d 
2 

 the

 ) the smoke particle as a sphere. The mass of one such particle 
3 
ρ = 1.05 × 10−16 g. With this, we can calculate the speed of 

  1 2 using mv =
2

 3k 0.344 m/s, which
2

  when BT . This gives v =  
   de Broglie formula gives λ = 1.84 × 10−14m. 
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iv. (2 points) Repeating the same procedure as above yields 27.0 nm. 

(2 points) For most everyday objects, we do not notice their wave-like behavior be­
cause their wavelengths are far too small to be noticeable. Only with the example in 
part (iv) do we get to the point where quantum effects might be measurable. 
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Problem 4. (15 points) Double-slit interference of electrons 

(a)	 (5 points) Recall the condition for constructive interference in double slit interference: 

d sin θm = mλ, (24) 

where m is the order of the maximum. Calling y the coordinate on the screen where 
the pattern is projected, we have 

y
sin m

θm =  
, (25) 

D 
where ym is the position of the maximum of order m. Thus 

d 
ym = mλ. (26) 

D 
Since w = ym+1 − ym, we have 

d D 
w = λ 

D 
⇒ w = λ . (27) 

d 

Using the de Broglie relation λ = h , w
p  e obtain 

hD 
w = .	 (28)

pd 

(b)	 (7 points) To calculate the electron’s de Broglie wavelength, we need to use the 
de Broglie relation λ = h/p, and we must know the momenta of the electrons. The 
electrons begin at rest and are accelerated by a voltage of 50 kV, acquiring some kinetic 
energy: 

	 p2
= qΔV ⇒ p = 2mqΔV .	 (29)

2m  
This gives a de Broglie wavelength of  

 
h h 

λ = = 
p

√ .	 (30) 
 2qmΔV 

Now, d = 2 ×  10−4 cm, D = 35 cm, ΔV = 50 kV,  h = 6.626 × 10−34 m2Kg/s, 
e = 1.6 × 10−19 C, m = 9.1 × 10−31 kg, thus 

6.626 × 10−34 
λ = √	 = 5.49  10−12 m, 

2 × 1.6 × 10−19 × 9.1 
×

× 10−31 × 50 × 103 

and 
D 12 35  w = λ = 5.49 
d 

× 10− = 9.6  10−7 m. 
2  10−4 ×
×
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(c)	 (3 points) Visible light ranges roughly between 400 ¯and 700 nm. Let’s choose λ = 550 
nm. The proportionality factor between this wavelength and the de Broglie wavelength 
of the electron in the Jönsson experiment is 

λ̄ 550 
a = = = 100182. 

λ 5.49 × 10−3 

¯ ¯The suitable values for d, D, w are then d = ad = 20 cm, D = aD = 35064 m, 
w̄ = aw = 9.6 cm. 
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Problem 5. (15 points) Electron Diffraction 

(a)	 (2 points) (Yep, just for watching the video!) 

(b)	 (3 points) With diffraction slits in both the horizontal and vertical directions, we can 
consider the grating as a square grid of emitting sources. In the figure below, one can 
see that these sources can be grouped into diagonal lines of sources that interfere with 
each other to give diagonally aligned interference patterns. 

(c)	 (10 points) As obtained in the previous problem, the de Broglie wavelength of elec­
trons accelerated by a potential ΔV is 

h h h 
λ = = = √ .	 (31) 

p	 mv 2qmΔV 

The strong reflection  of electrons at 50◦ is a result of the constructive interference 
of electron matter waves (which have the wavelength we just computed). The Bragg 
relation describes the condition under which waves scatter off planes of atoms: 

nλ = 2d sin θ,	 (32) 

where n is some positive integer, d is the spacing between atomic planes, and θ is the 
angle shown in the figure below. One can see that the Bragg relation is essentially 
just a fancy way of saying that constructive interference occurs when the path differ­
ence between the two rays bouncing off adjacent planes is an integer multiple of the 
wavelength. 
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d sin θ

θ θ

θ

The Davisson and Germer experiment is different in that the incoming beams of elec­
tron waves are at normal incidence (see diagram). Thus, we need a modified Bragg 
relation for this new geometry. If we imagine the electrons scattering off the surface 
layer of atoms, constructive interference occurs when (as usual) the path difference is 
an integer multiple of the wavelength: 

D sin θ = nλ. (33) 

D

θ
θ

Putting everything together, we get a lattice spacing of

nh 
D = √ . (34)

sin θ 2qmΔV 
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Plugging in n = 1 and θ = 50 gives D = 0.218 nm. This is in good agreement with the 
data from X-ray measurements. 
The treatment we have given here is arguably somewhat simplistic, and the only jus­
tification for some of the assumptions we have made is that our analysis gives the 
right answer. For an examination of some of the more subtle aspects of the problem 
(e.g. electrons travel at a slightly different velocity when they’re inside a crystal com­
pared to when they’re in a vacuum. Does this change things?), see Section 2-5 in “An 
Introduction to Quantum Physics” by French and Taylor. 
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Problem 6. (15 points) Single-slit Diffraction and Uncertainty 

(a)	 (5 points) From the diagram, one sees that the pattern of the screen has a destructive 
minimum at the angle where each emitter can be paired up with exactly one other 
emitter such that the path difference between waves emanating from them is exactly 
λ/2. From the geometry of the diagram, this is equivalent to saying 

δx λ	 λ 
sin θedge = ⇒ θ

 edge = ,	 (35)
2 2 δx

where in the last step we invoked the small angle approximation sin θ 
w 

≈ θ. Since 
tan θedge = , we can eliminate θedge in favor of w and D,

D
 giving  

λ 
w = D,	 (36)

δx

where we have again used a small angle approximation (this time it’s tan θ ≈ θ). 
Big Picture Zoomed in

θ
θ

w

Dθ

δx

(b)	 (5 points) The photons with the greatest transverse momentum will be those at the 
edge of the pattern. For such photons, their travel direction is given by θ = δpx ,

p  which 
combines with θ ≈ w/D to give 

w 
δpx = p.	 (37)

D 
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(c)	 (5 points) Combining E = hc/λ and E = pc gives the standard de Broglie relation 
p = h/λ. From above, we have p = (D/w)δpx and λ = (w/D)δx, which gives the 
Uncertainty Principle when substituted into the de Broglie relation: 

pλ = h ⇒ δx · δpx ∼ h.	 (38) 
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