
Problem Set 5 Solutions 
8.04 Spring 2013 March 12, 2013 

Problem 1. (10 points) The Probability Current 

We wish to prove that 
dPab 

= J(a, t) − J(b, t). (1)
dt 

Since Pab(t) is the probability of finding the particle in the range a < x < b at time t it is 
mathematically equal to  b  b 

Pab(t) = |ψ(x, t)|2dx = ψ ∗ (x, t)ψ(x, t)dx. (2) 
a a 

Its time derivative is therefore given by  b  b  b    
dPab d ∂ ∂ψ ∂ψ∗  

= ψ ∗ (x, t)ψ(x, t)dx = [ψ ∗ (x, t)ψ(x, t)] dx = ψ ∗ + ψ dx, (3)
dt dt ∂t ∂t ∂t a a a

where we were allowed to take the time derivative inside the integral because the integral is 
in time whereas the integral is over space. Note, though, that the total derivative became a  b
partial derivative when we took it inside the integral, because whereas

a ψ
∗(x, t)ψ(x, t)dx 

is a function of t only (since x has already been integrated over), ψ is in general a function 
of both x and t, and we only want to take its time derivative. 

We now make use of the fact that regardless of what the wavefunction ψ(x, t) happens 
to be, it must obey the Schrödinger equation: 

2∂ψ(x, t)  ∂2ψ(x, t)
i = − + V (x)ψ(x, t) (4a)

dt 2m ∂x2 
2∂ψ∗(x, t)  ∂2ψ∗(x, t)−i = − + V (x)ψ ∗ (x, t) (4b)

dt 2m ∂x2 

We can thus eliminate the partial derivatives in Equation 3:  b       
dPab 1  2 ∂2ψ  2 ∂2ψ∗ 

= ψ ∗ − + V ψ − − + V ψ ∗ ψ dx (5a)
dt i a 2m ∂x2 2m ∂x2 

 2 ∂2ψ ∂2ψ∗ 
=

1 
 b  

−
 
ψ ∗ − ψ 

 
+ (ψ ∗ V ψ − V ψ ∗ ψ)

 
dx (5b)

i 2m ∂x2 ∂x2 a b   
i ∂2ψ ∂2ψ∗ 

ψ ∗ = − ψ dx, (5c)
2m a ∂x2 ∂x2

where in the last equality we used the fact that ψ∗V ψ = V ψ∗ψ because in position space 
the potential energy operator commutes with both ψ and ψ∗ . To proceed, we integrate the 
two remaining terms by parts. Recall that b   b∂g  b ∂f 

f dx = fg − g dx. (6) 
a ∂x a a ∂x
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This means  
b ∂2ψ ∂2ψ∗ bdPab i i ∂ ∂ψ ∂ ∂ψ∗ 

= ψ ∗ − ψ dx = ψ ∗ − ψ dx (7a)
dt 2m a ∂x2 ∂x2 2m a ∂x ∂x ∂x ∂x  

ψ ∗ 
b b i ∂ψ ∂ψ∗ b ∂ψ∗ ∂ψ b ∂ψ ∂ψ∗ 

= − ψ − dx + dx (7b)
2m ∂x a ∂x a a ∂x ∂x a ∂x ∂x 

ψ ∗ 
b bi ∂ψ ∂ψ∗ 

= − ψ (7c)
2m ∂x a ∂x a  

i ∂ψ∗ ∂ψ ∂ψ∗ ∂ψ  
= ψ − ψ ∗ − ψ − ψ ∗ , (7d)

2m ∂x ∂x x=a ∂x ∂x x=b 

so if we let 
i ∂ψ∗ ∂ψ 

J(x, t) ≡ ψ − ψ ∗ , (8)
2m ∂x ∂x 

then 
dPab 

= J(a, t) − J(b, t), (9)
dt 

which is what we were trying to prove. From this equation, we can see that the units of 
J(x, t) must be (time)−1, because Pab is a probability and is therefore a pure number, and t 
has units of time. 
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Problem Set 5	 Solutions 
8.04 Spring 2013	 March 12, 2013 

Problem 2. (20 points) Visual Observation of a Quantum Harmonic Oscillator 

(a)	 (5 points) The energy of a classical harmonic oscillator is given by 

E =
1 
mω0

2A2 ,	 (10)
2 

where ω0 is the angular frequency, m is the mass, and A is the amplitude of the 
oscillation. The quantum harmonic oscillator1, on the other hand, has energy 

1 
En = ω0 n + .	 (11)

2  

Equating these expressions and rearranging gives  
1 
2 mω0

2A2 1 mω0 πmν0 
n ≈ = A2 = A2 ,	 (12)

ω0 2 

where we have converted to using the frequency ν0 = ω0/2π instead of the angular 
frequency ω0, and have assumed that n is so large that n + 

2
1 ≈ n (we can check 

our result against this assumption later). Plugging in m = 10−12 g, ν0 = 103 Hz, and 
A = 10−3 cm, we get 

n ≈ 3 × 1012 . (13) 

From this result we see that we were justified in neglecting the 1/2 term in n + 
2
1 . 

(b)	 (5 points) If this oscillator were in its ground state, its energy would be 

E0 =
1 
ω0 = π ν0 = 2.1 × 10−12 eV,	 (14)

2 

where once again ν0 = 103 Hz. This is smaller than the average thermal energy of air 
molecules (25 meV) by a factor of 

Eair 25 × 10−3eV ≈ 1010 = .	 (15)
E0 2.1 × 10−12 eV 

(c)	 (5 points) We can perform the same manipulations as we did in part (a), except this 
time we cannot neglect the 1/2 term in the oscillator’s energy, since we are dealing 
with the ground state: 

E0 =
1 
ω0 =

1 
mω0

2A2 ⇒ A = = . (16)
2 2	 mω0 2πmν0 

1There is really no difference between a classical harmonic oscillator and a quantum one — the Universe is 
governed by quantum mechanics, so in principle all oscillators are quantum mechanical. The only difference 
is whether or not the quantum effects are obvious. 
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Note that this is width of the Gaussian ground state wavefunction. Numerically, this 
comes out to be A = 0.00401 nm, which is much smaller than the wavelength of visible 
light: 

λ 400 nm 
= ≈ 105 .	 (17)

A 0.00401 nm 

(d)	 (5 points) I would not recommend award of a grant to carry out this research. From 
part (a), we can see that the experimenter’s proposed system corresponds to a high 
quantum number state, which means the experiment is unlikely to really probe quan­
tum mechanical effects. At best, it would be able to investigate the approach of the 
quantum system to the classical limit, but even this is unlikely, given the results of 
(b) and (c). In part (b), we saw that air molecules possess energies that are much 
larger than the spacings between energy levels of the quantum harmonic oscillator. 
Thus, unless the experimenter can perform his/her experiment in a perfect vacuum 
(something that nobody can achieve), the air molecules will likely interact with the 
system and cause the oscillator to make transitions to higher energy levels. Finally, 
the calculation in part (c) shows that using visible light to probe the system is not 
practical. Even if one neglects the collapse of the wavefunction caused by measuring 
the system with light, the fact that the relevant spatial scales (∼ 0.004 nm) are so 
much smaller the wavelength of the light means that the light will essentially ignore 
features on those scales. This is why, for instance, mirrors for telescopes that operate 
in the visible wavelength band have to be grounded to such high precision, whereas 
those for microwave telescopes are about as smooth as a nice piece of cardboard. 
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Problem 3. (30 points) Harmonic Oscillators Oscillate Harmonically 

(a) (4 points) Our wavefunction is initially 

1 
ψ(x, 0) = √ [φ0(x) + iφ1(x)], (18)

2

where φ0 and φ1 are the normalized eigenstates for the ground and first excited states of  
the harmonic oscillator respectively. The eigenstates evolve in time in the usual fashion  
(phase factor with angular frequency equal to −En/ ), so the principle of superposition  
tells us that  

1   1   
ψ(x, t) = √ e −iE0t/ φ0(x) + ie−iE1t/ φ1(x) = √ e −iω0t/2φ0(x) + ie−i3ω0t/2φ1(x) ,  

2 2 
(19)  

where in the last step we used the fact that the nth excited state of a harmonic oscillator  
has energy En = ω0(n + 1 ). The probability distribution |ψ(x, t)|2 is given by  

2 

1   ∗   
|ψ(x, t)|2 ≡ ψ ∗ ψ = e −iω0t/2φ0(x) + ie−i3ω0t/2φ1(x) e −iω0t/2φ0(x) + ie−i3ω0t/2φ1(x) (20a)

2     
iω0t/2φ ∗ (x) − iei3ω0t/2φ ∗ =

1 
e (x) e −iω0t/2φ0(x) + ie−i3ω0t/2φ1(x) (20b)0 12

1   
φ0 + ie−iω0tφ ∗ = |φ0(x)|2 + |φ1(x)|2 − ieiω0tφ ∗ (20c)1 0φ1

2
1     −iω0t − e iω0t= |φ0(x)|2 + |φ1(x)|2 + iφ0φ1 e (20d)
2
1   

= |φ0(x)|2 + |φ1(x)|2 + 2φ0φ1 sin ω0t , (20e)
2

where in the second last step we took advantage of the fact that energy eigenstates  
can be taken to be real (see Problem Set 3), so φ∗ 

0 = φ0 and φ∗ 
1 = φ1.  

(b) (10 points) The expectation value (x̂) is defined in the usual fashion: 

∞ ∞ ∞ ∞ ∞1(x̂) = xψdx = x|ψ(x, t)|2dx = x|φ0(x)|2dx + x|φ1(x)|2dx + 2 sin ω0t xφ0φ1dxψ ∗ ̂ . 
2−∞ −∞ −∞ −∞ −∞ 

(21)  
To proceed, we need to know something about the form of φn, the nth excited energy  
eigenstate of the harmonic oscillator. As discussed in lecture, the general form of φn  
is given by  

2aφn(x) = NnHn(x/a)e − x 2
2 , (22) 
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where Hn is the nth Hermite polynomial and a ≡ /mω0. Since the Hermite poly­
nomials are either even or odd, the eigenstates are also either even and odd2, which 
means that |φ0(x)|2 and |φ1(x)|2 are both even. In turn, x|φ0(x)|2 and x|φ1(x)|2 are 
odd, so 

∞ ∞ 

x|φ0(x)|2dx = 0 and x|φ1(x)|2dx = 0, (23) 
−∞ −∞ 

since the integrals are over symmetric intervals. This leaves the last term, for which 
we will need the precise forms of the energy eigenstates: 

√  mω0 
 1/4 − x 2 mω0 

 1/4 x 2 − x 2 

2a 2aφ0(x) = e 2 and φ1(x) = e 2 (24)
π π a 

This gives 

∞ 2mω0 
∞  x  2 

(x̂) = sin ω0t xφ0φ1dx = a sin ω0t e −( a
x )

2 

dx (25a)
π a−∞ −∞

2mω0 
∞ mω022 2 −u 2 = a sin ω0t u e du = a sin ω0t = sin ωot. (25b)

π 2−∞ 2mω0 

The reader is encouraged to check that this expression has the right units. The ampli­t 
tude of the oscillation is 2 

2mω0 
, and the angular frequency of the oscillation is ω0. 

It is instructive to see how to calculate (x̂) also via the operator method. Taking the 
result from Problem 4 (e), we can express x̂ in terms of â, â†: 

x̂ = (â + â †). (26)
2mω0 

Thus 

(x̂) = dxψ ∗ (â + â †)ψ = 
2mω0 

−iω0t =
1 

φ0(â + â †)φ0 + 
i
e φ0(â + â †)φ1+ 

2mω0 2 2 
i iω0t †)φ0 +

1 †)φ1− e φ1(â + â φ1(â + â . (27)
2 2 

Now, still from Problem 4 we know that, for any energy eigenstate φn, 

φnˆ = ˆ†φn = φnaφn−1 = φn−1ˆ
†φn = 0, (28)aφn φna ˆ a 

and thus we have 

i i−iω0t iω0t(x̂) = e φ0ˆ e a †φ0 = sin ω0t. (29)aφ1 − φ1ˆ
2mω0 2 2 2mω0 

2Of course, we know from Problem Set 3 that we can always take the energy eigenstates to be even or 
odd, but it’s nice to see it explicitly in Equation 22 as well. 

6  

~

∫ ∫

∫ √ ∫
√ ∫ √ √

~

~

√
~

√
~

∫
√

~
∫ ∫
∫ ∫ ]

∫ ∫ ∫ ∫

√
~

[ ∫ ∫ ] √
~



  
 

 
     

 
   

  

 
   
�

 
 

�
 
 

�
 
  

�
 �

 

�
 

�
 
 

(c) (10 points) For (p) we have 
∞ ∞ ∂ (p̂) = ψ ∗ ̂ ψ ∗ ψdx (30a)pψdx = 

i ∂x −∞ −∞  
∞  

iω0t/2φ ∗ 
0(x) − iei3ω0t/2φ ∗ −iω0t/2φ = e 1(x) e 0(x) + ie−i3ω0t/2φ 

1(x) dx(30b)2i −∞  
∞  

= φ0φ0 
 + φ1φ1 

 − ieiω0tφ1φ0 
 + ie−iω0tφ0φ1 

 dx, (30c)
2i −∞ 

where we have once again used the fact that the energy eigenfunctions can be taken to 
be real. Let us examine this term-by-term. Since the derivative of an even function is 
odd (and vice versa3), terms like φnφ

 
n must be odd overall. We thus have 

∞ ∞ 

φ0φ
 
0dx = 0 and φ1φ

 
1dx = 0. (31) 

−∞ −∞ 

Plugging in the forms of the energy eigenfunctions gives 
∞ 

(p̂) = −ieiω0tφ1φ
 
0 + ie−iω0tφ0φ

 dx (32a)12i −∞ ⎡ ⎤√ √ 2 
∞ 2 2 21 m ω0 x 2 − x 2 x 2 − x 2 √ e − x 

iω0t 2 −iω0t 2 −iω0t a= ⎣e 
3 e a − e 

3 e + e 2 
a ⎦ dx (32b)

2 π a a a−∞ 

∞  √ 2 
 1 m ω0 iω0t 

√ 
2 −u2 −iω0t 2 −u −iω0t −u2 √ 

= e 2u e − e u 2e + e e 2 du (32c)
2 π −∞ √ √ √1 m ω0 π πiω0t −iω0t −iω0t (32d)= e √ − e √ + e 2π 
2 π 2 2   1 m ω0 √ √ 

= i sin ω0t 2π + (cos ω0t − i sin ω0t)2 π (32e)
2 π

m ω0 
= cos ω0t. (32f) 

2 

Again, let’s obtain the expression for (p̂) also through the operator method. From 
Problem 4 (e), we know that 

m ω0 
p̂ = −i (â − â†), (33)

2 

and hence, 
m ω0(p̂) = −i dxψ ∗ (â − â†)ψ. (34)
2 

3If you’re not sure about this, try proving it from the definition of the derivative: f '(x) = 
f (x+Δx)−f(x)limΔx→0 Δx . It may also help to compute the derivatives of the energy eigenstates of the har­

monic oscillator explicitly. Finally, try drawing a sketch! A picture is worth 103 words, especially in physics. 

7  

∫ ∫
~

~
∫ [ ] [ ]

~
∫ [ ]

∫ ∫

~
∫ [ ]
√

~
∫

√
~

∫
√

~
[ ]

√
~√

~

√
~

√ ∫



�
 
     �

 

 

 
  

 

 

  

Now, expanding like in Equation (27) and keeping into account Equation (28), we 
obtain 

m ω0 i i	 m ω0−iω0t	 iω0t(p̂) = −i	 e aφ1 + e a †φ0 = cos ω0t. (35)φ0ˆ	 φ1ˆ
2 2 2	 2 

(d)	 (6 points) Any wavefunction can be expanded in terms of the energy eigenstates of 
the system:  

−iEnt/ψ(x, t) = cnφn(x)e , (36) 
n 

where En is the energy of the nth excited state. With the harmonic oscillator, we have 

1 
En = ω0 n + 

2 
, (37) 

so the wavefunction takes the form  
ψ(x, t) = e −iω0t/2 cnφn(x)e −inω0t . (38) 

n 

Each term in the sum oscillates with period Tn = 2π 
nω0 

, i.e. some integer fraction of 
−iω0t/2the classical period T = 2π/ω0. For example, aside from the overall the e in 

front, the first term is constant, the second term oscillates with period T , the third 
term oscillates with period T/2, and so on. Thus, after a time T all the phases will be 
aligned once again, except for phase in the prefactor, so that 

ψ(x, t + T ) = e −iω0T/2ψ(x, t).	 (39) 

Taking the norm squared of both sides gives 

|ψ(x, t + T )|2 = |ψ(x, t)|2 ,	 (40) 

which is a mathematical way of saying that the probability distribution returns to its 
original shape after period T = 2π/ω0. 

The probability distribution is periodic because the difference between angular fre­
quencies (En − Em)/ are rational multiples of a common value. With the harmonic 
oscillator in particular, this arises because the energy levels are equally spaced apart 
(with ΔE = ω0). √ 
Consider instead a system whose first three energy levels are E0, 2E0, 2E0, with as­
sociated eigenstates φ0, φ1, φ2. Then the state 

√
1 E0 2E0 2E0−i −i −iψ(x, t) = √ e � tφ0 + e � tφ0 + e � tφ2 
3 

is not periodic in time, or more precisely there is no value of T for which  

φ(x, t) = e iαψ(x, t + T ). (41)  
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To see this, let’s rewrite ψ as  

−i E0 t √ 
( 2−1)E0 tφ0 + e 

e −i −i E0 tφ2ψ(x, t) = √ φ0 + e , 
3 

so that (41) is equivalent to 

e −i( 
√ 
2−1) E0 T = 1, together with e −i E0 T = 1, 

which is equivalent to 

√ 
( 2 − 1)T = 2πn 

E0 
, together with T = 2πm 

E0 

for some integers n and m. Dividing one equation by the other we get 
√ n 
2 − 1 = , 

m 

which has no solution. 
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Problem 4. (40 points) Operators for the Harmonic Oscillator 

(a)	 (10 points) First remember what it means when we take the Hermitian conjugate 
(”dagger”) of an operator. The operator O† is defined by the following equation: 
where ψ1 and ψ2 are arbitrary wavefunctions that satisfy that usual requirements of 
continuity, normalizability, and so on. With this, the norm squared of our state is 
given by 

∞ ∞ ∞ 

(φ̃n, φ̃n) = φ̃∗ 
nφ̃ndx = [(â †)nφ0] ∗ (â †)nφ0dx = [(â †)n−1φ0] ∗ ââ†[(â †)n−1φ0]dx 

−∞ −∞ −∞ 
(42) 

Now, ââ† can be rewritten in the following way: 

âˆ† = ˆa a †ˆ a a, ̂ †] + ˆ†â = 1 + ˆ a,	 (43)a aˆ† − ˆ a + ˆ†â = [ˆ a a a †ˆ

where we have used the identity [â, â†] = 1 (prove this by expressing â and â† in terms 
of p̂ and x̂). Inserting this into our expression, we have 

∞ 

(φ̃n, φ̃n) = (φ̃n−1, φ̃n−1) + [(â †)n−1φ0] ∗ â†â[(â †)n−1φ0]dx (44a) 
−∞ 

∞ 

= (φ̃n−1, φ̃n−1) + φ̃n
∗

−1â
†âφ̃n−1dx. (44b) 

−∞ 

Now, recall that the energy operator for a harmonic oscillator can be written as 

Ê = ω â†â +
1 

,	 (45)
2 

which means we can rewrite the last line in terms of the energy operator: 
∞ 

(φ̃n, φ̃n) = ( φ̃n−1, φ̃n−1) − 
1
(φ̃n−1, φ̃n−1) + 

1 
φ̃n

∗
−1Êφ̃n−1dx. (46)

2	 ω −∞ 

˜This is nice because φn−1 is an energy eigenstate (it may not be normalized, but 
it’s still an energy eigenstate, because a constant times an eigenfunction is still an 
eigenfunction). This means that Ê acts on it in a very simple way, because it satisfies 
the energy eigenvalue equation: 

1 
Ĥ ˜ ˜φn−1 = En−1φn−1 where En = n + ω.	 (47)

2 
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In our case, then, we have 

1	 En−1
(φ̃n, φ̃n) = (φ̃n−1, φ̃n−1) + (φ̃n−1, φ̃n−1)	 (48a)

2	 ω 

= 
1
(φ̃n−1, φ̃n−1) + (n − 1) + 

1 
(φ̃n−1, φ̃n−1) (48b)

2	 2 
= n(φ̃n−1, φ̃n−1).	 (48c) 

We have thus related the norm square of φ̃n to the norm square of φ̃n−1. We can repeat 
the process until we reach the ground state: 

(φ̃n, φ̃n) = n(φ̃n−1, φ̃n−1) = n(n − 1)(φ̃n−2, φ̃n−2) = · · · = n(n − 1) . . . 2 · 1(φ̃0, φ̃0) = n!, 
(49) 

where in the last step we used the fact that φ̃0 = φ0, so φ̃0 is in fact the normalized 
ground state. The norm of |ñ) is thus t √ 

(φ̃n, φ̃n) = n! .	 (50) 

(b) (6 points) The normalized energy eigenstates are given by 

φn ≡ √	 1 
(â †)nφ0. (51) 

n! 

First we test for the “normality” of the states: 
∞1	 n! 

(φn|φn) = ân(â †)nφ0dx = = 1,	 (52)φ ∗ 
0n!	 n!−∞ 

where we made use of the result we proved in (a). For orthogonality, we have 

(φm|φn) = √ 1 ∞ 

φ ∗ âm(â †)nφ0dx,	 (53)0
m!n! −∞ 

where m  Now, after acting on φ0	 a† n times, we end = n.	 with the creation operator ˆ
up with a state that is proportional to the nth excited state φn. Our equation then 
calls for the annihilation operator â to act on the state m times. If m > n, we have 
more annihilation operators than we do creation operators, and at some point we get 
to âφ0, which gives us zero. If m < n, we can say 

∞	 ∞ 
√ 1 

φ ∗ 
0â

m(â †)nφ0dx = √ 1 
(â n(â †)mφ0) ∗ φ0dx, (54) 

m!n! −∞ m!n! −∞ 

and again we end up lowering a state more than we raise it, only this time it’s the left 
copy of the wavefunction. We thus conclude that (φm|φn) = 0 unless m = n, in which 
case (φm|φn) = 1. The states φn are therefore orthonormal. 
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(c) (6 points) We wish to show that 
√	 √ 

ˆ = nφn−1 and a †φn = n + 1φn+1.	 (55)aφn	 ˆ

So far, we only know that âφn is proportional to φn−1. In other words, 

aφˆ n = Dφn−1,	 (56) 

where D is some proportionality constant. Let us “dot” this equation with itself and 
perform manipulations similar to what we did in part (a): 

∞ 

[âφn] ∗ [âφn]dx = D2(φn−1|φn−1) (57a) 
−∞ 

∞ 

φ ∗ 
nâ

†ˆ dx =aφn	 D2(φn−1|φn−1) (57b) 
−∞ 

∞1	 1 
φ ∗ Êφndx − ) =	 (57c)n	 (φn|φn D2(φn−1|φn−1)

ω	 2−∞ 
En 1 

(φn|φn) −	 (φn|φn) = D2(φn−1|φn−1) (57d)
ω	 2

n(φn|φn) = D2(φn−1|φn−1) (57e)
√ 
n = D,	 (57f) 

where we have used the fact that En = n + 
2
1 ω and that φn and φn−1 are normalized 

energy eigenstates of the harmonic oscillator. We thus have 
√ 

ˆ =	 (58)aφn nφn−1. 

Similarly, let 
â†φn = Fφn+1, (59) 

where F is some proportionality constant. Performing analogous manipulations, we 
have: 

∞ 

[â †φn] ∗ [â †φn]dx = F 2(φn−1|φn−1) (60a) 
−∞ 

∞ 

φ ∗ 
nââ

†φndx	 = F 2(φn−1|φn−1) (60b) 
−∞ 

∞ 

φ ∗ †ˆ[â, â†] + â a φndx = F 2(φn−1|φn−1)	 (60c)n 
−∞  

∞  

(φn|φn) + φ ∗ 
nâ

†aφˆ ndx = F 2(φn−1|φn−1)	 (60d) 
−∞ 

(φn|φn) + n(φn|φn) = F 2(φn−1|φn−1)	 (60e) 
(n + 1)(φn|φn) = F 2	 (60f) √ 

n + 1 = F, (60g) 
∞ 

φ∗ †ˆwhere we have used the fact that [â, â†] = 1 and the result D2 ≡ −∞ nâ aφndx = n 
that we obtained above. We thus have 

√ 
â†φn = n + 1φn+1.	 (61) 
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(d) (6 points) The number operator is defined as 
ˆ †ˆN = â a. (62) 

We now examine the commutators of this operator with the annihilation and creation 
operators: 

N, ̂ N̂ˆ a ˆ a aˆ aˆ†ˆ = −(ˆa a a)ˆ a, ̂ a. [ ˆ a] = a − ˆN = ˆ†ˆa − ˆa a aˆ† − ˆ†ˆ a = −[ˆ a †]â = −ˆ (63) 

Similarly, 
ˆ † ˆ †ˆ †ˆâ

† †ˆ †[ ˆ a †] = a † − ˆ N = ˆ aˆ† − ˆ a a †(ˆa † − ˆ a) = ˆ†[ˆ a †] = ˆ (64)N, ̂ N ̂ a a a a = ˆ aˆ a a a, ̂ a . 
ˆFrom lecture, we know that for the harmonic oscillator the energy operator E can be 

written as4 

ˆ1 1 E 1ˆ †ˆ ˆ ˆE = ω0 â a + = ω0 N + ⇒ N = − . (65)
2 2 ω0 2 

ˆ ˆThis means that the eigenfunctions of N are the eigenfunctions of E, i.e. the energy 
ˆeigenstates of the harmonic oscillator. We can see this explicitly by having N act on 

φn: 
1 1 ω0 1 1ˆ ˆNφn = Eφn − φn = n + φn − φn = nφn, (66)
ω0 2 ω0 2 2 

since we know that the energy eigenvalues of the harmonic oscillator are given by 
1 ˆEn = ω0 n + 
2 . We can also see from this that the eigenvalues of N are simply the 

various values of n (i.e. the quantum number corresponding to each energy eigenstate). 

(e) (6 points) Our original definitions of â and â† were 

x̂ p̂ x̂ p̂
â ≡ + i√ and â† ≡ − i√ . (67) 

2 /mω0 2m ω0 2 /mω0 2m ω0 

We can solve these to get expression for x̂ and p̂: 

m ω0 
x̂ = (â + â †) and p̂ = −i (â − â†). (68)

2mω0 2 
Now, for an eigenstate φn, we have 

∞ ∞ 

(x̂) = φn 
∗ xφn φ ∗ (ˆ a dx = 0,ˆ dx = n a + ˆ†)φn (69)

2mω0−∞ −∞ 

because when â† acts on φn, the result is proportional to φn+1, which is orthogonal to 
φn, and similarly for â. For the momentum, we have 

∞ m ω0 
∞ 

(p̂) = φn 
∗ pφn φ ∗ (ˆ a dx = 0,ˆ dx = −i n a − ˆ†)φn (70)

2−∞ −∞ 

using exactly the same reasoning. 
†4If you’re not sure where this comes from, express â and â in terms of x̂ and p̂, and make use of the 

ˆ †commutation relation [x̂, p̂] = i to express E of the harmonic oscillator in terms of â and â . 
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(f) (6 points) First we express x̂2 and p̂2 in terms of â and â†:  	    
x̂2 = (â + â †) (â + â †) = (â + â †)(â + â †) (71a)

2mω0 2mω0 2mω0 

= (â 2 + ââ† + â †â + (â †)2) = (â 2 + (â †)2 + 2â †â + [â, â†]) (71b) 
2mω0	 2mω0 

= (â 2 + (â †)2 + 2 N̂ + 1).	 (71c)
2mω0 

Similarly, for p̂2, we have    	  
2 m ω0	 m ω0 m ω0 
p̂ = −i (â − â†) −i (â − â†) = − (â − â†)(â − â†) (72a) 

2	 2 2 
m ω0	 m ω0 

= − (â 2 − ââ† − â†â + (â †)2) = − (â 2 + (â †)2 − 2â †â − [â, â†]) (72b) 
2	 2 

m ω0 
= − (â 2 + (â †)2 − 2N̂ − 1).	 (72c)

2 

Plugging these operators into (x̂2) and (p̂2) gives 
∞ 

(x̂2) = φ ∗ (â 2 + (â †)2 + 2 N̂ + 1) φndx (73a)n 
−∞	 2mω0 

∞ 

= φ ∗ 
n(2N̂ + 1)φndx	 (73b)

2mω0	 −∞ 

= (2n + 1),	 (73c)
2mω0 

where in going from the first line to the second line we used the same reasoning as 
we did in part (e) i.e. orthogonality of φn and (â†)2φn ∝ φn+2 or â2φn ∝ φn−2. In 
going from the second line to the third line we used our results from part (d). The 
expectation value of the momentum looks similar: 

∞ m ω0(p̂2) = φ ∗ − (â 2 + (â †)2 − 2N̂ − 1) φndx (74a)n	 2−∞ 

m ω0 
∞ 

= φ ∗ (2N̂ + 1)φndx	 (74b)
2 n

−∞ 
m ω0 

= (2n + 1).	 (74c)
2 

Now, recall that the uncertainties are defined as Δx ≡ (x̂2) − (x̂)2 and Δp ≡ 
(p̂2) − (p̂)2 . Since (x̂) and (p̂) are zero from part (e), we get 

ΔxΔp = (x̂2)(p̂2) = (2n + 1),	 (75)
2 

which is our desired result. 
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