
Problem Set 6	 Solutions 
8.04 Spring 2013	 April 2, 2013 

Problem 2. (10 points) Finding Meaning in the Phase of the Wavefunction 

(a)	 (3 points) We calculate the expectation value of x̂ in the usual way:  	  
iqx/nψ(x)) ∗ iqx/nψ(x)(ˆ = dxψ ∗ (x)ˆ (x) = dxx(e ex)ψnew new xψnew 	  

dxxe−iqx/nψ ∗ (x)eiqx/nψ(x) ==	 dxxψ ∗ (x)ψ(x) = xo. 

So we conclude that (x̂)ψnew = (x̂)ψ. 

(b)	 (4 points) The expectation value of p̂ is given by  	  
iqx/nψ(x)) ∗ ∂ iqx/nψ(x))(ˆ = dxψ ∗ (x)p̂ψnew(x) = −in dx(e (ep)ψnew new	 ∂x  	  

−iqx/n iq iqx/nψ(x) + eiqx/n ∂ 
= −in dxψ ∗ (x)e 

n 
e	 ψ(x)

∂x  	  
iq	 ∂ 

= −in dxψ ∗ (x)
n 
ψ(x) − in dxψ ∗ (x) ψ(x) = q + po,

∂x 

which means
 
(ˆ = (p̂)ψ + q.
 p)ψnew 

(c)	 (3 points) We see that adding an overall factor eiqx/n is equivalent to shift the momen­
tum expectation value by q, while the position expectation value remains unchanged. 
This is not to be confused with the multiplication of the wavefunction by a constant 
complex phase eiα . The latter is x-independent, and does not change anything in the 
state. 
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Problem 3. (15 points) Relation between Wavefunction Phase and Probability Current 

(a) (4 points) The probability current is given by 

in ∂ψ∗ ∂ψ J (x, t) = ψ − ψ ∗ . (1)
2m ∂x ∂x 

iθ(x)Our wavefunction is ψ(x) = A(x)e , so
 

∂ψ ∂θ ∂A ∂ψ∗ ∂θ ∂A
 iθ(x) iθ(x) −iθ(x) −iθ(x)= A(x)i e + e and = −A(x)i e + e . (2)
∂x ∂x ∂x ∂x ∂x ∂x 

Putting everything together gives 

in ∂θ ∂A ∂θ ∂A ∂θ J (x, t) = −|A|2i + A − |A|2i − A = |A(x)|2 n 
, (3)

2m ∂x ∂x ∂x ∂x m∂x


which is the result we wanted.
 

(b) (4 points) If the wavefunction is real, then ψ = ψ∗ . The two terms in the probability 
ψ ∂ψ

∗ 
current J (i.e. and ψ∗ ∂ψ ) thus become identical, and when we subtract them 

∂x ∂x 
from each other we get zero. Note that in general, the two terms are complex conjugates 
of each other, which means the probability current can be written in a slightly more 
compact form: 

n ∂ψ∗ 

J (x, t) = − Im ψ . (4) 
m ∂x 

This confirms our earlier conclusion, because if ψ is purely real, then ψ ∂ψ
∗ 
has no 

∂x 
imaginary part to it, and J = 0. 

(c) (3 points) For a plane wave of wavevector k, we have 

ψ(x) = Aeikx ⇒ 
dψ 

= Aikeikx , (5)
dx 

which, upon substitution into our previous equation, gives 

nk J (x, t) = |A|2 . (6) 
m 

Note that this result holds even if we re-insert the time dependence into our wave-
function, so that ψ(x, t) = Aei(kx−ωt), because the time-dependent exponential factors 
cancel. This is simply a statement of the fact that a plane wave represents a constant 
rate of probability flow. 
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(d)	 (4 points) It is not correct to say that since e±αx is real that the current inside the 
barrier is zero, because our wavefunction may be complex, since B and C are complex 
numbers. If ψ = Beαx + Ce−αx, then 

ψ ∗ αx −αx = B ∗ e + C ∗ e ,	 (7) 

and 
∂ψ∗ 

ψ = |B|2 e 2αx − |C|2 e −2αx + α(B ∗ C − C ∗ B).	 (8)
∂x 

Plugging this into our expression for the probability current, we get 

n  	  nα J (x, t) = − Im |B|2 e 2αx − |C|2 e −2αx + α(B ∗ C − C ∗ B) = − Im (B ∗ C − C ∗ B) . 
m	 m 

(9) 
For the current to vanish, we thus require 

Im (B ∗ C − C ∗ B) = 0.	 (10) 

Note that in this particular case, the “Im” label is actually unnecessary, because the 
combination B∗C − C∗B is in fact already imaginary. To see this, note that if we 
complex conjugate the entire expression, we get a minus sign: 

(B ∗ C − C ∗ B) ∗ = BC ∗ − CB ∗ = −(B ∗ C − C ∗ B),	 (11) 

which is a smoking gun evidence for a purely imaginary number ((ai)∗ = −ai). Thus, 
our condition is just that 

B ∗ C − C ∗ B = 0. (12) 
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Problem 4. (15 points) Odd-parity Energy Eigenstates in the finite square well 

(a)	 (3 points) The parameters which characterize this system are the length L, the energy 
V0 and the mass m. We can build a characteristic momentum by taking po 

2 = 2mVo. 
Recalling that n has units of momentum times length (e.g., ΔxΔp ≥ n 

2 ), we can trade 
this momentum for a second characteristic length Ro as, 

n n 
Ro = = √ ,	 (13) 

po 2mVo 

where we’ve kept the factor of 2 for later convenience. Ro is thus (up to factor of 2π)
 
the quantum wavelength of a particle of mass m with energy Vo.
 
We can now construct a dimensionless parameter,
 

L 
go = . (14)

Ro 

Physically, the length Ro sets a lower limit on the size for the evanescent tails of bound 
−x/Rostates in the well: a state with energy E = −Vo would decay as e outside the 

well; all bound states must decay more slowly. Meanwhile, the dimensionless constant 
go is a measure of how classical the well is – if go >> 1, the the evenescent tails are 
negligibly small and quantum effects can be generally ignored. Note that this obtains 
when the well is sufficiently deep and wide. We’ll come back to this in part (c) below. 

(b)	 (6 points) The finite square well has potential  
−V0 for − L ≤ x ≤ L 

V (x) =	 (15)
0 for |x| > L. 

We now proceed to solve the Schrödinger equation in the different regions. First we 
deal with |x| > L, where V = 0. This gives 

n2 d2 n2 d2 d2ψ − + V ψ(x) = − ψ(x) = Eψ(x) ⇒ = κ2ψ, (16)
2m dx2 2m dx2	 dx2 

√ 
where κ ≡ −2mE/n. We choose to write κ this way because we are searching for 
bound states, so E < 0 and κ > 0. The general solution to this equation is 

ψ(x) = Ae−κx + Beκx .	 (17) 

For x < −L, we must have A = 0, because otherwise ψ would diverge as x → −∞ and 
be unnormalizable. Similarly, for x > L we must have B = 0 to prevent a divergence 
as x → ∞. This means  

Beκx for x < −L 
ψ(x) =	 (18)

Ae−κx for x > L. 

4
 

( )



  Now consider the region −L ≤ x ≤ L, where the Schrödinger equation takes the form 

n2 d2 d2ψ − + V0 ψ(x) = Eψ(x) ⇒ = −l2ψ, (19)
2m dx2 dx2  


where l ≡ 2m(E + V0)/n. The differential equation is the same as that for a free 
particle, so the general solution is 

ψ(x) = C sin(lx) + D cos(lx). (20) 

In this problem we are searching for solutions with odd parity. The sine function is odd 
while the cosine function is even. We can therefore say that D = 0. Putting everything 
together, we have
 

ψ(x) =
 

⎧ ⎪⎨ ⎪⎩
 

Ae−κx for x > L 

D sin(lx) for − L < x < L (21) 

−Aeκx for x < −L, 
where we have taken advantage of the fact that we are dealing with odd-parity states 
to insist that the normalization constants on either side of the origin (e.g. the A’s) are 
the same. This allows to avoid having to deal with the x < 0 region separately. Our 
next step is to match boundary conditions. First we require that the wavefunction be 
continuous at x = L: 

Ae−κL = D sin(lL). 

We also require the derivative to be continuous there, which means 

−Aκe−κL = Dl cos(lL). 

(22) 

(23) 

Taking the ratio of these two equations gives 

κ = −l cot(lL). (24) 

Since l and κ contain only E, V0, and constant factors like n, what we have here 
is a transcendental equation for the permissible energies. At this point we non­
dimensionalize by letting 

L
 
 L
√
 L
 

z ≡ 2m(E + V0), y ≡ −2mE, and go = 2mV0 (25)

n n n
With a little algebra, one can show that our transcendental equation thus becomes a 
pair of equations to be solved simultaneously: 

y = −z cot z (26a) 
2 2 2 go = y + z . (26b) 

Given a value for go, these equations can be solved graphically. In the plot below, we 
show y = −z cot z in blue and go 

2 = y2 + z2 in red, with go set to 10. A solution exists 
whenever the curves intersect. In the example shown below, for example, we see that 
for the odd-parity states we are considering in this problem, there exist three bound 
states. Once the values of z at the intersections have been found, one can go back to 
the definition of z shown above to calculate the bound state energies E. 
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(c)	 (4 points) If go is very large, then the intersections occur very close to the locations 
of the discontinuities in the cotangent function, that is, at multiples of π. This can be 
seen in the plot below, where we have set go = 100. 
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y

Substituting this back into our definition of z, we get 

(n + 1)2π2n2 

En − (−V0) ≈ ,	 (27)
2m(2L)2 

where n is odd. The left hand side is the energy of the state above the bottom of the 
well (which is at energy −V0). Referring back to Problem set 4, we see that the right 
hand side precisely the energy of the nth energy eigenstate for an infinite potential well 
of width 2L. This makes sense — if go is large, then we have a very deep well, one 
which is an excellent approximation to an infinite well. Note that we only get the odd 
energies here, because we have only considered solutions with odd parity. 
As go is decreased, the number of bound states decreases. In the plot below, we show 
a variety of go’s. 
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As go decreases, the red curves “sweep left”, and eventually we no longer have any 
bound states. This occurs when go is so small that the red curves hit the horizontal 
axis while the blue curve is still negative. Since the blue curve crosses the axis at 
z = π/2, the condition for a bound state to exist is 

π π 
go ≥ 

2 
⇒ L ≥ 

2 
Ro. (28) 

The latter inequality tells us that, holding Ro fixed, in order to have an odd bound 
state L has to be large, and conversely, holding L fixed, Ro has to be small, i.e. the 
square well has to be deeper than a certain value. Remember that, as we saw in class, 
there is always at least one even bound state. 

(d)	 (2 points) As seen from the pictures below, the evanescent tails become narrower as 
the well becomes deeper. This is in agreement with (??). 
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Problem 5. (35 points) Quantum Glue 

(a) (10 points) For bound states, where E < 0, the wavefunction takes the following
 
form:
 

ψ(x) =
 

⎧ ⎪⎨ ⎪⎩
 

Aeκx for −∞ < x < −L 

Ceκx + De−κx for − L < x < L (29)
 

Fe−κx for L < x < ∞, 
√ 

where κ ≡ −2
n 
mE , and we have excluded the decaying exponential solution in the 

leftmost region and the growing exponential solution in the rightmost region in order 
to ensure that our wavefunction is normalizable. Because our potential is even, we can 
make our life simpler by remembering that the energy eigenfunctions must be either 
even or odd:
 ⎧ ⎪⎨ ⎪⎩
 

Aeκx for −∞ < x < −L 

B cosh κx for − L < x < L (30) 

Ae−κx for L < x < ∞, 

ψeven(x) =

and
 ⎧ ⎪⎨ ⎪⎩
 

Ceκx for −∞ < x < −L 

D sinh κx for − L < x < L (31) 

−Ce−κx for L < x < ∞. 

ψodd(x) = 

(Recall that the hyperbolic cosine and hyperbolic sine functions are the even and
 
odd combinations respectively of real exponentials). First let us deal with the even 
solutions. Continuity of the wavefunction requires 

B cosh κL = Ae−κL . (32) 

The jump condition is
 
dψ
 
dx


     
 −
 
dψ
 
dx


     
 = −
 
2mW0 

n2 
ψ(a), (33)
 

−a+ a

so we have 

−κAe−κL − Bκ sinh κL = − 
2mW0 

Ae−κL . (34)
n2 

Eliminating A and B from these equations gives 

2mW0
tanh κL = 

n2κ 
− 1 . (35) 

√ 

Since κ ≡ −2mE , this is an implicit equation for the bound state energies. We can n 
non-dimensionalize the equation by letting ξ ≡ κL and g0 ≡ mLW0 : n2 

ξ + ξ tanh ξ = 2g0 (36) 
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As for the odd solutions, continuity requires
 

D sinh κL = −Ce−κL , (37) 

while the jump in the slope tells us that 

2mW0
Cκe−κL − Dκ cosh κL = 

n2 
Ce−κL (38) 

Eliminating C and D gives 

tanh κL = 
2mW0 

n2κ 
− 1 

−1 

⇒ ξ + ξ coth ξ = 2g0. (39) 

(b)	 (6 points) These transcendental equations can be solved graphically. Shown below is 
a plot of ξ + ξ tanh ξ in red, ξ + ξ coth ξ in blue, and the lines corresponding to 2g0 

equal to 2 · 0.2, 2 · 0.5, 2 · 4 in black, grey and light grey, respectively. Intersections 
between the red and horizontal curves give values of ξ corresponding to even bound 
solutions, while intersections between the blue and horizontal curves give values of 
ξ corresponding to odd bound solutions. The energies can then be found using the 
definition of ξ: 

n2ξ2 

E = − . (40)
2mL2 

Thus, the greater the value of ξ, the lower (the more negative) the bound state energy, 
and the more tightly bound the particle is. Note that a larger value of g0 corresponds 
to a larger value of L, i.e. a wider separation of the two delta’s. 

1 2 3 4

2

4

6

8

There are several noteworthy features here: 

•	 For two wells that are close together, only one bound state (the even one) exists. 

•	 As L → 0, g0 → 0, and the intersection between the red curve and the horizontal 
lines approaches ξ = 0. We can then expand 

ξ + ξ tanh ξ ≈ ξ + ξ2 ≈ ξ, 
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so that the corresponding trascendental equation simplifies to 

ξ 
ξ = 2g0 ⇒ = 2. 

g0 

Plugging this value into our formula for the energy, we see that 

m(2W0)
2 

Eclose = − ,	 (41)
2n2 

which is precisely the ground state energy for a single delta function well of 
strength 2W0! Physically, this is because the wells are so close together that they 
effectively look like one well. 

•	 As the separation between the wells is increased (i.e. as L, and therefore g0 is 
increased), we eventually get to a point where there are two bound states. 

•	 When there are two bound states, the even bound state always has a higher value 
of ξ than the odd bound state. From Equation 40, we thus see the even state 
is always more tightly bound than the odd state. This makes sense because we 
know the ground state cannot have any nodes by the node theorem, so it must 
be even. 

•	 For widely separated wells, g0 is large and both the even and odd solutions ap­
proach ξ = g0. Indeed, it’s easy to see from the plot that large g0 gives large 
values of ξ at the intersections, so we can approximate tanh ξ, coth ξ ≈ 1, and 
both the trascendental equations become 

2ξ = 2g0. 

Correspondingly, the energies of the two states are almost degenerate, with energy 
close to 

mW0
2 

Efar = − ,	 (42)
2n2 

which is the ground state energy of a single delta function potential. Physically, 
this is because two widely-separated wells effectively operate as independent single 
wells. 

•	 The separation L at which the second bound state appears (i.e. when we get 
the first odd bound state) can be computed by the following technique. As we √ 

2mEincrease g0 (and therefore L), we eventually get to a point where κ = n2 

is approximately zero (the odd “bound-state-in-waiting” is barely bound). The 
wavefunction may thus be Taylor expanded in κ: 

ψodd(x) = 

⎧ ⎪⎨ ⎪⎩
 

C(1 + κx) for −∞ < x < −L
 

Dκx for − L < x < L (43) 

−C(1 − κx) for L < x < ∞. 

The continuity and jump conditions are therefore 

2mW0
DκL = −C(1 − κL) and Cκ − Dκ = − DκL. (44)

n2 
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Solving these gives 
(1 − 2g0)(κL − 1) = κL. (45) 

We wish to take the limit κ → 0, because we want to find the g0 (and therefore 
L) when the second bound state first appears. Doing so tells us that 

crit 1 n2 

g0 = ⇒ Lcrit = . (46)
2 2mW0 

(c) (5 points) From part (b) we know that g0 = 0.1 gives a single even bound state: 
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For g0 = 0.5, a second odd solution appears with zero energy (and thus zero curvature). 
Technically this is not normalizable, but if we study g0 = 0.5 + f for any infinitessimal 
f, it becomes normalizable. Such a barely-bound, barely-normalizable state is called a 
threshold bound state. 
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Finally, for g0 = 10, both even and odd solutions exist and are in fact all but degenerate: 
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(d)	 (3 points) From the plots, we can see that as the wells as brought closer together, 
the value of ξ for the ground state decreases. Using Equation 40, we can see that the 
ground state becomes more tightly bounded. We can (numerically) solve for ξ as a 
function of L, and then use Equation 40 to plot the ground state energy E as a function 
of L. Doing so yields the blue line in the plot below, where the energy is shown in 

mW 2	 n2 
units of 0 and L is in units of .

2n2	 mW0 
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(e)	 (5 points) Going to lower L minimizes the energy, so the wells “want” to be close 
together. The induced force between wells is: 

d d 1 d 
F = − E(x) = − E(L) = − E(L).	 (47)

dx d(2L) 2 dL 

In terms of dimensionless variables (indicated in parentheses) the force induced by the 
ground state looks like: 
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(f)	 (3 points) If delta functions were real protons, the repulsive effect between the nuclei 
would dominate at really small L, and the net result would be the red curve. In that 
case, one sees that there exists an equilibrium L. 
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(g)	 (3 points) When the two wells, say, of width L, are very close to each other, we can 
consider them as one only well of width 2L, whereas when they are far apart the energy 
levels are approximately the same as those of a single well of width L. We then expect 
that increasing the separation between the two wells, the energy levels move from the 
eigenvalues of the well of width 2L to the eigenvalues of the well of width L. From 
Problem 4 we know that a square well of width 2L has more energy eigenstates than 
a well of width L of the same depth. Thus, increasing the distance between the two 
wells, some of the levels will converge to the same eigenvalue at large enough distance. 
The two pictures below show the situation. Note the decrease in the number of energy 
levels as the distance of the wells is increased. 
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For two separated wells, the first two states are symmetric and antisymmetric super­
positions of the ground states of the individual wells, the second two states, which are 
the 2nd and 3rd excited states, are symmetric and antisymmetric superpositions of the 
first excited states of the individual wells, etc., so we have the same number of nodes 
inside each well for the 2nd and the 3rd excited state, but it differs from the number of 
nodes of the 4th excited state, being the symmetric superposition of the second excited 
states of the individual wells. The reason this does not violate the Node Theorem is 
that the antisymmetric combination has an extra zero half way between the two wells. 
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Problem 6. (15 points) Further Facts about Hermitian Operators and Commutators 

(a)	 (2 points) 

Note the following useful property: 

∗ 

(f |g) ∗ ≡ f ∗ gdx = g ∗ fdx = (g|f).	 (48) 

But we already know that: 
(f | ˆ g) = ( ˆ (49)A† Af |g),
 

which combined with Eq. 48 gives us the answer:
 

A†(f | ˆ g) = ( ˆ Af) ∗ .	 (50)Af |g) = (g| ˆ

(b)	 (2 points) To find the adjoint of in, it is useful to go back to writing out the integrals 
ˆthat define the adjoint. If we let A = in we have 

f ∗ ingdx = (−inf) ∗ gdx,	 (51) 

where we have simply used the definition of complex conjugation. So we see that the 
ˆadjoint of A = in must be
 

Â†
 = −in.	 (52) 

(c)	 (2 points) First we use the definition of the adjoint: 

(f |( ˆ g) = ( ˆBf |g), (53)AB̂)† A ˆ

where we thought of ÂB̂ as a single operator and moved it to the left as one “package”. 
ˆ ˆThe trick now is to treat A as an operator acting on the state Bf and to use the 

ˆdefinition of the adjoint to “bring A back”:
 

A†
(Â( ˆ Bf | ˆ g).	 (54)Bf)|g) = ( ˆ

Now we do the same for B̂, treating it as an operator that acts on the state Â†g: 

A†(Bfˆ |Â† g) = (f |B̂† ˆ g). (55) 

Putting everything together, we see that in general, 

(ÂB̂)† = B̂†Â† . (56) 
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ˆ Ĉ ≡ [ ˆ	 C†:(d) (1 point) The operator C is defined as A, B̂]. Let us consider ˆ

Ĉ† = [ A,ˆ B̂]† = ( ÂB̂ − B̂Â)† = ( ÂB̂)† − (B̂Â)† = B̂†Â† − Â†B̂† (57) 

We now use hermiticity of A and B to conclude that this equals 

= B ˆ A ˆ = −[ ˆ B] = − ˆ (58)ˆA − ˆB A, ˆ C 

ˆ(e) (2 points) Let φa be an eigenfunction of the hermitian operator A with eigenvalue a, 
ie
 

ˆ
Aφa = aφa, (59) 

To see that a must be real, note that, on the one hand, 

ˆ	 |2dx φ ∗ 
a Aφa = dx φ a 

∗ a φa = a dx |φa	 (60) 

ˆwhile, using hermiticity of A, we also have that, 

dx φ ∗ Aφa = dx ( ˆ ) ∗ φa = dx (a φa = a dx |φa|2 . (61)a 
ˆ Aφa	 ) ∗ φa 

∗ 

This can only be true if 
a = a ∗ (62) 

i.e a is real. 

(f)	 (1 point) Consider the operator (iĈ): 

(iĈ)† = −iĈ† C, = i ˆ	 (63) 

which means that iĈ is Hermitian. As a result, eigenvalues of iĈ are real, so eigenvalues 
ˆof C must be purely imaginary.
 

ˆ
(g) i. (1 point) The operator J	 is not Hermitian, which is something that is mostly 
easily proven by contradiction. Suppose we were to assume that Ĵ were Hermitian, 

ˆ ˆ [ ˆso that J† = Ĵ . Let us rewrite J as −1 
s K, Ĵ ] and consider Ĵ†:
 

†   †
1 1	 1 1 
[ ˆ J ] ˆJ − ˆ	 ( ˆ K† − ˆ J†) = K ˆ J ˆĴ† = − K, ˆ = − K ˆ JK̂ = − J† ˆ K† ˆ ( ˆJ − ˆK), 
s s	 s s 

(64) 
ˆwhere in the last equality we used the fact that K is Hermitian and our (soon to 

ˆbe proved incorrect!) assumption that J is also Hermitian. The final expression 
is equal to +1 

s [
ˆ J ] = − ˆ Thus, our algebra implies that J† = − ˆ which K, ˆ J . ˆ J , 

Ĵ† ˆ ˆcontradicts our assumption of = J (i.e. our assumption that J is Hermitian). 
Since we have a contradiction, we are forced to conclude that Ĵ is not Hermitian. 
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∫ ∫ ∫

∫ ∫ ∫ ∫

( )



  
ii.	 (1 point) Starting with [ ˆ J†], we have K, ˆ

[ ˆ J†] [K̂† , ˆ K†Ĵ† − Ĵ† ˆ J ˆ K ˆ (65a)K, ˆ = J†] = ˆ K† = ( ˆK)† − ( ˆJ)† 

† 
=	 −( ˆJ − ˆK)† = − [ ˆ J ] = −(−sĴ)† = sĴ† ,K ˆ J ˆ K, ˆ	 (65b) 

where 
ˆ ˆ K̂†• In the first equality we used the Hermiticity of K to replace K with . 

• In the 3rd equality of the first line we used Equation 56 from part (a). 

• In the penultimate equality we used our definition of Ĵ , i.e. [ ˆ J ] = −sĴ .K, ˆ


What we have, then, are two results (which really imply each other):
 

[K, ˆ	 Ĵ ] = −sĴ and K, ˆ Ĵ † . (66)[ ˆ J†] = +s 

ˆ ˆiii.	 (1 point) If Kϕk = kϕk (i.e. ϕk is an eigenstate of K with eigenvalue k), then 
the state ( ˆ K̂ with eigenvalue (k − s), as we now Jϕk) is also an eigenfunction of
 
show:
 

K̂(Jϕˆ	
k) = K̂Jϕˆ k = ([ K, ˆ ˆ JK̂)ϕk = −sJϕˆ k + k ˆ Jϕk). (67)J ] +	 ̂ Jϕk = (k − s)( ˆ

iv.	 (1 point) Similarly, we have: 

K̂(Ĵ†ϕk) = K̂Ĵ†ϕk = ([ ˆ J†]+ Ĵ† ˆ Ĵ†ϕk +kĴ
†ϕk = (k+s)(Ĵ†ϕk). (68)K, ˆ K)ϕk = +s 

ˆv.	 (1 point) From part iii, we see that J is a lowering operator that acts on an 
ˆeigenstate of K and gives a result that is directly proportional to an eigenstate of 

K̂ with an eigenvalue that is s lower than the eigenvalue of the original eigenstate. 
The operator Ĵ† “raises” in an analogous way. The algebraic structure explored in 
this problem is precisely analogous to the one in the quantum harmonic oscillator. 
One simply makes the following identifications: 

K̂ Ĵ (Lowering) Ĵ† (Raising) 
Harmonic Oscillator Ê or N̂ ≡ â†â â â† 
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