
8.04: Quantum Mechanics Professor Allan Adams
 
Massachusetts Institute of Technology Thursday April 4
 

Problem Set 7 

Due Tuesday April 9 at 11.00AM 

Assigned Reading:
 

E&R 6all 
Li. 71−9, 81 

Ga. 4all, 6all, 192 

Sh. 16, 5all, 11all, 192 

1.	 (15 points) Mathematical Preliminaries: Facts about Unitary Operators 

A Unitary operator U is an operator whose Adjoint is its inverse, ie 

ˆU †U = 11 = U U † 

iφj(a) Show that all eigenvalues λi of a Unitary operator are pure phases, λj = e . 

(b) Can an operator be both Hermitian and Unitary? 

(c) Suppose M is a Hermitian operator. Show that eiM is a Unitary operator. 

(d) Show that the product of two Unitary operators is also Unitary. 

(e) Suppose U is a Unitary operator, and v a state. Show that acting on v with U 
preserves the norm of v. 

(f) Recall our old friend the “Translate-by-L” operator which shifts the expectation 
value of the position by L, 

ˆ −L -
i p̂ ˆTL = e , TLf(x) = f(x − L) . 

We can similarly define a “Boost by q” operator which shifts the expectation value 
of the momentum by q (c.f. problem 2 on Problem Set 6), 

i	 i qxˆ +q - x̂ ˆBq = e , Bqf(x) = e - f(x) . 

Verify that T̂L and B̂q are both Unitary operators, and demonstrate that 

ˆ † ˆ	 B̂ † ˆT = T−L ,	 = B−q .L	 q 
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2. (20 points) Quantum Evolution is Unitary 

The time evolution of a quantum state is dictated by the Schrödinger equation, 

in ∂tψ(x, t) = Ê ψ(x, t) , 

ˆwhere E is the energy operator. The meaning of the Schrödinger equation is this: 
ˆgiven the state ψ(x, 0) at some moment in time t = 0, and given the operator E, 

we can unambiguously determine the state at any later moment in time by directly 
integrating this differential equation. We can thus define an operator, Ût, which maps 
any wavefunction at time 0 to its Schrödinger-evolved form at at time t, 

Ût ψ(x, 0) = ψ(x, t) . 

(a) Give a physical reason why Ût must be unitary, 

ˆ ˆ ˆUt 
†Ut = 11 . 

(b) Give a physical reason why Ût must satisfy a simple composition law, 

ˆ ˆ ˆUt2 Ut1 = Ut1+t2 . 

(c) Use the Schrödeinger equation to show that Ût satisfies the operator equation, 

iˆ Ê ˆ∂tUt = − Ut .n 

(d) Find the most general solution to this differential equation which satisfies the 
above two properties. 

ˆAside: Ut is often called the “Evolution operator” or the “Propagator”. In principle, we 
can always solve the Schrödinger equation by simply exponentiating −n

i tÊ; acting with 
ˆthe resulting Ut on a given wavefunction ψ then evolves ψ forward in time. However, 

exponentiating an operator is generally not a trivial thing to do. Nonetheless, we can 
often learn a lot about a system by studying the propagator and its properties. 

(e) As an example, identify Ût for the harmonic oscillator in terms of N̂ . 
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Aside: Symmetries in Quantum Mechanics 

Let’s pause to explore how symmetry transformations are realized in quantum mechan­
ics. Consider a transformation, T , which leaves physical observables invariant when 
acting upon all elements in the system – for example, translation in space, translation 
in time, spatial rotations, etc. In QM, leaving physical observables invariant means 
preserving probabilities. T must thus be represented by an operator, T̂ , which satisfies,   
( ̂ Tψ)Tφ| ̂

   
2 
= |(φ|ψ)|2 ∀φ, ψ
 

It is easy to check that any Unitary operator Û with Û †Û = 1̂1 satisfies this condition:

 ( ̂ Uψ)Uφ| ̂
     2 

=
 U † ˆ (φ| ̂ Uψ)
     2 

= |(φ|ψ)|2 ,
 

and indeed all the symmetry transformations we have studied so far (time-translations, 
spatial-translations and momentum-boosts) have been represented by unitary opera­
tors (Ût, T̂L and B̂q, respectively). 

Importantly, Unitary operators are not the only operators which satisfy our symmetry condi­
ˆtion. Consider a so-called “anti-unitary operator”, A, which satisfies 

( ˆ Aψ) = (ψ|φ)Aφ| ˆ

It is easy to check that an anti-unitary operator satisfies the symmetry condition, too:   
( ˆ Aψ)Aφ| ˆ
   
2 

= |(ψ|φ)|2 = |(φ|ψ)|2 

It is also easy to check that any anti-unitary operator squares to a unitary operator: 

(Â2φ|Â2ψ) = ( ˆ Aφ) = (φ|ψ)Aψ| ˆ

You can thus think of an anti-unitary operator as a sort of square-root of a unitary operator. 
Examples include the operator T̂ representing time-reversal, t → −t, as discussed in lecture. 
Note that time-reversing twice is equivalent to doing nothing, so T̂ does indeed square to a 
unitary operator, if a trivial one: T̂2 = 1̂1. Can you think of further examples of anti-unitary 
operators? What transformations do they realize? 

The fact that every symmetry operation must be represented in quantum mechanics by a 
unitary or anti-unitary operator is known as “Wigner’s Theorem”, and has many important 
consequences which you will explore in greater detail in 8.05 and 8.06. 
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3. (20 points) Getting a Sense for T . 

(a) Consider the scattering of particles of mass m off a step of height Vo. Compute 
t, r, T and R for both E > Vo and E < Vo. Sketch T (E). How do your results 
differ when you scatter uphill versus downhill? 

(b) In lecture	 we derived the transmission probability T for a particle of mass m 
incident on a barrier of width L and height Vo. For E < Vo, T was given by 

1 
T = 

V 2	 , 
o1 + sinh2(αL)

4E(Vo−E) 

2mwhere α2 = n2 (Vo − E), while for E > Vo it was given by, 

1 
T =	 , 

o1 + V 2 
sin2(k2L)4E(E−Vo) 

2m	 2 2mL2Vowhere k2
2 = n2 (E − Vo) and go = n2 measures the strength of the barrier. 

Sketch1 T as a function of 
V
E 
o 
for a very wide barrier (go = 20), a medium barrier 

(g0 = 2), and a thin barrier (go = 0.2). (Hint: it helps to express T in terms 
of dimensionless variables go and 

V
E 
o 
.) What is the limit of the transmission 

probability as the energy approaches the barrier height (E → Vo) in each case? 

(c) For a high, wide barrier,	 i.e. go » 1, how does T vary with L when E < Vo? 
Comment on the probability of a goldfish tunneling through the wall of its bowl. 

(d) As we saw in lecture, the transmission probability for a particle of mass m incident 
on a potential well of depth −Vo is given by, 

1 
T =	 , 

o1 + V 2 
sin2(k2L)4E(E+Vo) 

where k2 = 2m (E + Vo). Show that you can derive this result from that of the 2 n2 

barrier of height +Vo by taking Vo negative and keeping track of resulting signs 
and factors of i. Why does this work? Again, sketch T as a function of E/Vo for 
a very wide well (go = 20), a medium well(g0 = 2), and a thin well (go = 0.2). 

1You may use a program of your choice to generate the curves, but you should sketch them by hand in 
your solutions, indicating any values of particular importance. 
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(e) A hypothetical experimentalist friend of mine is conducting an experiment with 
a particularly interesting piece of wire which has a curious localized feature half 
way along its length. My friend, being a excellent quantum mechanic, decides to 
measure T (E), the transmission amplitude for scattering a single electron with 
energy E (measured in eV , electron volts) past this feature. She eventually reports 
the following data: 

Use this data to come up with a numerically reasonable model potential describing 
the localized feature on the wire. Estimate a characteristic energy and width for 
the feature on the wire which is scattering these electrons. Sketch the resulting 
potential, indicating any important features. 
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4.	 (20 points) Properties of the S-Matrix 

Consider a localized potential, V (x), which vanishes outside some region (e.g. a finite 
square well, or a δ-function barrier, etc.). Outside this “interaction” region the poten­
tial is constant, so the energy eigenstates are simple plane-waves moving either toward 
or away from the interaction region, with direction and amplitudes given in the plot 
below. Note that the amplitudes A, B, C and D are not independent; precisely how 
these amplitudes are related to each other is determined by the potential. 

“Scattering” is the process of sending particles in toward the interaction region from 
far away, watching what comes flying back, and deducing the physics of the interaction 
region from the results (does it contain a finite well? a delta function? a manticore?). 
Explicitly, by sending in a known set of waves from far away (with amplitude A from the 
left and D from the right), then observing the outgoing waves leaving the interaction 
region (with scattered amplitudes B and C), we can infer the relations between A, B, 
C and D imposed by the potential, and thus infer the physics of the potential itself. 

A convenient way to encode these relations is via the “Scattering matrix” or S-matrix, 
Ŝ(E), which relates incoming and outgoing waves at fixed energy E, 

φout Ŝ(E) φin = .E E 

In our 1d localized potentials, the in-going waves have amplitudes A and D, while the 
ˆout-going waves have amplitudes B and C, so S(E) is simply a 2×2 matrix acting as:      	   

˜	 ˜B r t A	 r tˆ=	 , S(E) = . 
C t r̃ D	 t r̃

ˆNote that we’ve suppressed the E-dependence of the components of S(E). Keep in 
mind, however, that these are non-trivial functions of the energy, E. As we’ll see, the 
detailed E-dependence of these components encodes all of the physics of the system. 

(a) Give a physical interpretation for |r|2 , |t|2 , |r̃|2 and |t̃|2 in terms of observable 
quantities. Design an experiment which measures |t|2 . Design another experiment 
which measures the phase of t. 
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(b) Physically, why must the S-matrix be a unitary matrix? 

(c) Use Unitarity of Ŝ to show that, 

|r|2 + |t|2 = 1 , |t̃|2 + |r̃|2 = 1 , r ∗ t̃+ t ∗ r̃ = 0 . 

The columns of Ŝ are thus orthogonal unit vectors. Physically, why must this be 
true? 

(d) Show that Parity (symmetry of V (x) under x → −x) implies that t = t̃ and r = r̃, 
i.e. that scattering is identical whether from left or right. 

(e) The scattering phase ϕ is defined as the phase of the transmission amplitude2 , 
t = |t|e−iϕ . Show that, for any symmetric potential, we must have that 

r = ±i|r|e −iϕ 

(f) Discuss the physical meaning of the scattering phase ϕ, and illustrate this inter­
pretation in terms of your experiments in part (a). 

2You will find all sorts of conventions for how to define the scattering phase in the literature, differing 
e.g. by adding or subtracting π, by overall signs, etc. Of course, nothing physical depends on our choice of 
conventions – different conventions just make different equations look simple. But keep this in mind when 
you see the phrase “scattering phase” in the literature, and always check which conventions are being used! 
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5. (25 points) Scattering off an Attractive δ-function Well 

Consider the scattering of particles of mass m off an attractive delta function potential 
of strength Vo located at the origin, 

V (x) = −Vo δ(x) , 

with Vo > 0. 

(a) Suppose a beam of particles is incident from the left with typical energy E. Cal­
culate the fraction of particles in the incident beam that are reflected by this 
potential, i.e. find the reflection coefficient R. Write your answer in terms of E, 
m, Vo and any fundamental constants needed. Check if your result is reasonable 
in the limits Vo → 0 for constant E, and E → 0 for constant Vo. 

(b) Compute the S-matrix for this system. Verify that it is Unitary. 

(c) Find the scattering phase, ϕ, and sketch it as a function of E. 

(d) Observe that Ŝ has a pole at an imaginary value of k corresponding to a negative 
value of E. Show that the corresponding energy is none other than the energy of 
the sole bound state of this potential. 

(e) Explain, heuristically, why this last result must be true	 – why must S diverge 
precisely at the energy of every bound state of a potential? 

Now consider a potential made up of two delta functions, as you studied in PSet 6 last 
week: 

V (x) = −Vo δ(x + L) − Vo δ(x − L) . 

where Vo is again positive. 

(d) Compute the S-matrix for this system. Verify that it is Unitary. 
Hint: Derive the matching conditions by hand, but solve the resulting linear equations 
using Mathematica – it’s faster and more reliable that doing the algebra by hand, and 
it’s good to get used to Mathematica (or the symbolic algebra package of your choice). 

(e) Again find the bound states from the S-matrix. 
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