
8.04: Quantum Mechanics Professor Allan Adams
 
Massachusetts Institute of Technology Wednesday April 10, 2013
 

Problem Set 8 
DueWednesday April 17, 2013 at 10.00AM 

Assigned Reading:
 

E&R 7all, AppM,N 

Li. 86, 91,2,3, 101,2,3 

Ga. 7all, 81,4,5 

Sh. 12all 

1.	 (15 points) Superposition State of a Free Particle in 3D 

At time t = 0, a free particle in 3d (V (x, y, z) = 0) is in the superposition state, 

π−3/2 
i(5y+z)/Lψ(pr, 0) = sin(3x/L) e . 

2 L3/2 

(a) If the energy of the particle is measured at t = 0, what value is found? 

(b) What possible values of the momentum pp = (px, py, pz) will measurement find at 
t = 0 and with what probabilities will these values occur? 

(c) Given the state ψ(pr, 0) above, what is ψ(pr, t)? 
i(d) If pp is measured to be pp = 
L (3 ̂ex + 5êy + êz)at t = 0, what is ψ(pr, t)? 
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2. (15 points) Degeneracies 

Suppose a system has some symmetry – e.g. rotational symmetry. This means the energy 
doesn’t change upon acting with the symmetry – e.g. if you rotate the system. This generally 
implies that the set of energy eigenvalues is degenerate, i.e. that there are multiple inde­
pendent eigenstates sharing the same energy. The degeneracy of the system at some energy 
refers to the number of energy eigenstates which share that energy eigenvalue. 

(a) Consider a free particle in 1d with definite energy E = i
2k2 

.
2m 

i. How many linearly independent states share this energy? 

ii. What symmetry guarantees this degeneracy? 

(b) Consider a 2d harmonic oscillator with frequencies ωx = ωy = ω. 

i. What are the energy eigenvalues? 

ii. What is the degeneracy of the nth eigenvalue? 

iii. What symmetry guarantees this degeneracy? 

(c) Now suppose we nudge the system so that ωx = (1 + f)ω, with f « 1. 

i. What are the new energy eigenvalues? 

ii. Is the spectrum again degenerate? 

iii. Plot the first 6 eigenenergies as a function of f for −0.1 ≤ f ≤ 0.1. 

iv. What is the relationship between the breaking of symmetry and the splitting 
of degeneracies? 
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3. (20 points) Mathematical Preliminaries: Angular Momentum Operators 

In classical mechanics, the angular momentum Lp = pr × pp is conserved in any rotation-
ally symmetric system. In QM, the angular momenta are given by operators: 

L̂x = ŷ p̂z − ẑ p̂y , L̂y = ẑ p̂x − x̂ p̂z , L̂z = x̂ p̂y − ŷ p̂x . 

(a) Using the basic commutator relations, [x̂a, p̂b] = ii δab, show that1: 

[L̂y, L̂z] = iiL̂x , [L̂z, L̂x] = iiL̂y , [L̂x, L̂y] = iiL̂z . 

(b) Consider the operator L̂2 = L̂2 + L̂2 + L̂2 . Using your results above, show that2:x y z 

[L̂z, L̂
2] = 0 . 

Argue, without further calculation, that [L̂x, L̂
2] and [L̂y, L̂

2] must also vanish. 

(c) Consider the “ladder” operators L̂− = L̂x − iL̂y and L̂+ = L̂x + iL̂y . Use the 
above commutation relations to show that: 

[L̂z, L̂±] = ±i L̂± , [L̂2 , L̂±] = 0 . 

What properties of the eigenvalues of L̂2 and L̂z follow from these commutators? 

1This matters because operators which do not commute do not have the same eigenvectors! More precisely, 
given operators A and |([ ˆ B])ψ|. Since eigenstates correspondˆ B̂ and a state ψ, it follows that ΔAΔB ≥ 1 A, ˆ2 

ˆto definite eigenvalues with zero uncertainty, a state ψ can only be a simultaneous eigenstate of A and of 
B̂ if ([ ˆ B])ψ = 0. In general, then, the commutator [L̂x, Ly] = ii L̂z tells us that having a definite valueA, ˆ ˆ

of L̂x means you generally don’t have a definite value of L̂y – just like having a definite position means not 
having a definite momentum. See Shankar, Chapter 9, for a beautiful disquisition. 

2This matters because it tells us we can find states with definite values of both L̂2 and L̂z . Meanwhile, 
as we discussed in lecture and as you can check by using î  and working in spherical coordinates,p = −iii

1 ∂ ∂ 1 ∂2 

L̂2 = −i2 sin θ + . 
sin θ ∂θ ∂θ sin2 θ ∂φ2 

But that’s just the operator we ran into in lecture inside the energy operator for a central potential! Indeed, 
2 1 1 ˆ ˆin spherical coordinates, p̂ = ∂2r + L2 . For central potentials, eigenstates of E are eigenstates of L̂2 .2rr r
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4. (15 points) Mathematical Preliminaries: Eigenfunctions of L̂2 and L̂z 

In the previous problem we exploited the commutation relations amongst the coordinates and 
their momenta to determine the commutation relations amongst the components of the an­
gular momentum. In this problem we will use the explicit coordinate representations of the 

angular momenta ( Lî = ir × pi = i ir × i ) in spherical coordinates to study the eigenfunctions, i
 
Ylm(θ, φ), of the angular momentum operators.
 

Working in spherical coordinates, L̂2 and L̂z take the form, 

1 ∂ ∂ 1 ∂2 ∂ 
L̂2 ˆ= −i2 sin θ + , Lz = −ii . 

sin θ ∂θ ∂θ sin2 θ ∂φ2 ∂φ 

and the first few spherical harmonics, Ylm, take the form,    
1 3 3 

Y0,0 = , Y1,0 = cos θ , Y1,±1 = = sin θe±iφ . 
4π 4π 8π 

(a) Show that these functions are properly normalized and orthogonal to one another. 

(b) Show that these functions are eigenfunctions of both L̂2 and L̂z, and compute the 
corresponding eigenvalues. 

(c) Construct Y42,−41. 
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5. (15 points) Angular Momenta and Uncertainty 

The commutator relations you derived in Problem 3 above imply an important set of 
uncertainty relations amongst the angular momenta, 

i i i 
ΔLxΔLy ≥ |(L̂z)| , ΔLyΔLz ≥ |(L̂x)| , ΔLzΔLx ≥ |(L̂y)| . 

2 2 2 

Consider a particle in a normalized eigenstate of L̂2 and L̂z, Ψ ∝ Ylm and (Ψ|Ψ)=1. 

(a) Show that in this case (Lx) = (Ly) = 0. Hint: use the operators L̂+ and L̂−. 

ˆ ˆ(b) Show that (L2) = (L2 ) = i
2 
[l(l + 1) − m2]. Hint: use L2 = L2 + L̂2 + L̂2 .y x 2 x y z

(c) Using your results, verify the first uncertainty relation above. Can the uncertainty 
in any two components of Lp ever vanish simultaneously? 
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6. (20 points) Lifting the Degeneracy of the Quantum Rigid Rotor 

Consider a spherically symmetric rigid rotor with moment of inertia Ix = Iy = Iz = I. 
For example, it might help to imagine Professor Evans curled up into a compact and 
uniform sphere3 and set spinning. Classically, his energy is given by, 

Lp 2 

E = 
2I 

(a) What are the energy eigenstates and eigenvalues for this quantum rigid rotor? 

(b) What is the degeneracy of the nth energy eigenvalue? 

Now suppose Prof. Evans gets sore and stretches a bit such that his moment of inertia 
in the z direction becomes Iz = (1 + f)I, with the other two moments unchanged. 

(c) What are the new energy eigenstates and eigenvalues? 

(d) Sketch the spectrum of energy eigenvalues as a function of f. For what sign of f 
do the energy eigenvalues get closer together? Intuitively, why? 

(e) What is the degeneracy of the	 nth energy eigenvalue? Is the degeneracy fully 
lifted? If so, explain why and suggest a way to break only some of the degeneracy. 
If not, explain why not and suggest a way to break all of the degeneracy. 

3A Yoga master, he is not, but strong with the centripetal force, he is. 
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