
8.04: Quantum Mechanics Professor Allan Adams
 
Massachusetts Institute of Technology Thursday April 25
 

Problem Set 9 

Due Thursday May 2 at 11.00AM 

Assigned Reading:
 

E&R 7all, AppM,N 

Li. 82,3, 10all 
Ga. 4c, 8all 
Sh. 13all 

1. (10 points) Coulomb Potential Superposition States 

Let φnlm(r) denote the properly-normalized energy eigenfunctions of the coulomb po­
tential with principle quantum number n and angular momentum quantum numbers l 
and m. Consider an electron in the state   √ 

ψ(r) = C φ100(r) + 4iφ210(r) − 2 2φ21−1(r)

(a) Find the normalization constant C.
 
ˆ
(b) What is the expectation value of E? 

(c) What is the expectation value of L̂2? 

(d) What is the expectation value of L̂z? 

(e) Write down φ(r, t) at some later time t. 

Hint: At no point should you use the functional form of these eigenstates! All you need is 
orthonormality of the energy eigenfunctions, (φnlm|φn'l'm' ) = δnn' δll' δmm' , and the action of 
the various operators on the energy eigenstates. 
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2. (20 points) Where does a weakly bound electron live? 

Consider an electron trapped in a coulomb potential in the state corresponding to 
maximum orbital angular momentum, g = n − 1. 

(a) Show that   
1 (r) = ron n + 
2

and that   

2) = r 

1
(r o 
2 n 2 (n + 1) n + 

2

(b) Use the above results to show that, for large values of n and g, 
2(r2) → ron 

Δr → 0
(r) 

21 e
En → − 

2 n2ro 

That is, show that, for large values of n, the electron is well localized near the 
surface of a sphere of radius n2ro and has energy which is the same as that of a 
classical electron in a circular orbit of the same radius. 

(c) What can you say about the size of a weakly bound state of hydrogen? Is this a 
quirk of hydrogen, or is this generally true of weakly bound states? Discuss? 

3. (10 points) Mighty Fine Structure 

Estimate the leading correction to the energy eigenvalues of Hydrogen due to relativistic 
corrections to the electron kinetic energy, as discussed in lecture. Use your results to 
make a diagram of the energies of the n=1, 2 and 3 states both before and after 
including this “fine-structure” correction, indicating the numerical values the energies 
and remaining degeneracies of each energy eigenvalue. 
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4. (20 points) Short Answer: Coulomb is not Hydrogen 

Answer each part with no more than one short sentence and no more than one equation. 
By “Hydrogen” here let’s agree to understand the simple model of an electron in the 
coulomb potential which we’ve studied in lecture so far. 

(a) Consider a “Hydrogen” atom in its (1,0,0) ground state. Is the electron in motion? 

Hint: Classically, “In motion” means “where the particle is” varies with time. In 
Quantum Mechanics, the best answer we can give to the question, “where is the particle” 
is (x). So: in an energy eigenstate of Hydrogen, is the electron “in motion”? 

(b) Why doesn’t a “Hydrogen” atom in its ground state radiate? 

(c) Consider a “Hydrogen” atom in its (2,1,1) excited state. Is the electron in motion? 

(d) Why doesn’t a “Hydrogen” atom in this excited state radiate? 

(e) Experimentally, if we excite a physical Hydrogen atom from (1,0,0) into (2,1,1), 
it will relatively quickly decay back down to the ground state. How much angular 
momentum would our atom of “Hydrogen” emit in the process? 

(f) What wavelength will the resulting radiation have?	 How does this compare to 
the Rydberg-Ritz formula? 

(g) Experimentally, excited atoms radiate and decay to lower energy states. However, 
in (a)-(d) above, you (correctly) argued that the 8.04 model of “Hydrogen” does 
not radiate. There’s apparently a contradiction between your (correct) argument 
and the experimental fact that the atom decays to a lower energy state! What is 
missing in our model? In a more realistic model in which such a decay is possible, 
can the Energy operator possibly be Hermitian? Discuss. 
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5.	 (40 points) Lab Exercise II: Multiple Wells 

Run the PhET simulation called “Band Structure” and use it to answer the following 
questions. Note that the numbers produced by this simulation are correct for a particle 
of mass me = .511MeV , the electron mass. You are strongly encouraged to work in groups. 

(a) Set the potential to 1 Square Well with Height 18.2eV and Width 0.4nm. Verify 
that there are 3 bound energy eigenstates, and that their energy eigenvalues are 
discrete and non-degenerate. Record these values and sketch each eigenstate. 

(b) Keeping the shape of the potential fixed, change the number of wells to	 N=2. 
Begin with the separation between wells set to the maximum allowed, 0.2nm. 

i. Verify that the energy eigenvalues are discrete, non-degenerate, and come in 
sets, or “bands”. How many states lie in each band? How does the mean 
energy of each band compare to the eigenenergies of the single well? 

ii. For the top state and the bottom state in each band, count how many zeroes 
lie inside wells and how many lie between wells. How are these states related 
to the wave functions of the single well? What about the other states in the 
same band – how are they related to the wave functions of the single well? 

iii. How does the width (in energy) of each band vary from band to band? 

iv. Reduce the separation between wells, holding the width and height fixed. How 
do the width and mean energy of each band vary as you vary the separation? 

v.	 Set to minimum separation. Within each band, one state looks nearly periodic 
with a single dominant period. Which state, and what is its (approximate) 
wavelength, λ? Compute the energy of a free particle of mass me and this 
wavelength; compare this to the observed energy of the nearly-periodic state. 

(c) Keeping the shape of the potential fixed, repeat the above analysis for N=3, 4, 
and so on (on scratch paper, no need to turn this in) until you are ready to make 
predictions for the special case of N=10. State your predictions. 

(d) Keeping the shape of the potential fixed, change the number of wells to 10. Repeat 
each step of the analysis above. How did your predictions pan out? 

(e) For the case of 10 wells, make a plot of En as a function of n for the minimum 
allowed separation. Indicate on your plot the free-particle energies you calculated 
in part (b.v). Point out any interesting features of this graph. What would your 
graph look like if we set the separation to infinity? Sketch a prediction. What 
about sending the separation to zero? Again, sketch your prediction. 

(f) Keeping the shape of the potential fixed and setting the separation to the mini­
mum allowed, imagine taking the number of wells very large, N » 1. What would 
your plot of En as a function of n look like? Sketch your prediction, compressing 
the horizontal axis so that all bound states appear in the plot. 

http://phet.colorado.edu/en/simulation/band-structure
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