
8.04: Quantum Mechanics Professor Allan Adams
 
Massachusetts Institute of Technology 2013 February 7
 

Lecture 2 

Experimental Facts of Life 

Assigned Reading: 

E&R 16,7, 21,2,3,4,5, 3all NOT 4all!!! 
Li. 1all, 23,5,6 NOT 2-4!!! 
Ga. 12,3,4 NOT 1-5!!! 
Sh. 3 

We all know atoms are made of: 

•	 electrons 

–	 Cathode rays in CRT monitors make bright spots. If they can be sprayed in such 
a manner, they must exist. 

–	 Alternatively, cloud chamber tracks can be observed. 

•	 nuclei 

–	 α particles shot into atoms occasionally fly back, as per the experiments of Ruther­
ford, Geiger, Marsden, and others. 

–	 Also, they are collided at places like the RHIC by people like Prof. Busza. If they 
can be collided, they must exist. 

We also know that classically, atomic orbits are unstable. In spite of this, we are compelled 
to say the following. 

Experimental result #1: atoms exist!
 

We also know from our previous discussions of color and hardness the following.
 

Experimental result #2: randomness exists!
 

As an aside, hard scattering to detect dense cores did not end with Rutherford, 
Geiger, and Marsden. Similar experiments in the 1960s of electrons off of protons 
showed that protons are made of 3 dense parts each with fractional (relative to 
the electron) charge, called quarks. This earned Kendall and Friedman of MIT 
and Taylor of Stanford the 1990 Nobel Prize. 
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Figure 1: Discrete atomic spectra 

Balmer noticed by being a little clever (but mostly obsessed) that spectral emission lines 
followed the formula   −1

4 
λn ≈ (3646 angstrom) · 1 − for n ∈ {3, 4, 5, . . .} . (0.1) 

n2

Rydberg and Ritz then found that 

−2 −2λ−1 = R · (n1 − n2 ) for ni ∈ Z, n2 > n1 (0.2) 

where R is the Rydberg constant dependent on the particular element but independent of 
the emission series. Where did that come from? 1 

Experimental result #3: atomic spectra are discrete!
 

Regarding discrete spectra, let us consider light at a frequency ν and amplitude A. We 
measure a current I because light is liberating electrons from the metal in what is known 
as the photoelectric effect, so we tune the voltage ΔV to get I = 0. We expect that a 
more intense beam makes the electron more energetic, as the energy is proportional to the 
intensity A2, and K ≈ qeΔV , so ΔV needs to be bigger to make I = 0. We also expect this 
to be generally independent of ν. 

What we instead find is that ΔV (I = 0) is independent of A correct to 1 part in 107, ΔV 
varies linearly with ν, and there exists a minimum ν below which no electrons are liberated 
at any A! 

1Editor’s note: where did that come from? I mean, am I supposed to explain the reason for the spectra 
right here and now, or leave it as an open question for readers to ponder? 
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Figure 2: Photoelectric effect experimental schematic
 

Figure 3: Photoelectric dependence of I on V : expectation (top) versus reality (bottom) 

Einstein’s interpretation of this is that light comes in packets of definite energy E = hν, the 
intensity is proportional to the number of such packets, and the kinetic energy of an electron 
liberated from a metal by light is K = hν − W . A plot of the electron kinetic energy versus 
the light frequency yields a straight line of slope h, which is called the Planck constant. 
Another quantity I defined by h = 2πI is much more often used in quantum mechanics, and 
while this is technically called the Dirac constant, it is often just called the Planck constant 
exactly because I is used so much more often than h in calculations. This will be seen later 
on. 

The consequences of this include that the intensity determines the rate of electron liberation, 
but for ν <


h
W , no electrons can be liberated regardless of intensity. Furthermore, you know
 

E = cp from 8.02 or 8.022, λν = c from 8.03, and E = hν from Einstein’s model. Therefore,
 
p =
 h 

λ
.
 This means that the discrete packets of light with wavelength λ have a momentum
 

p given by the previous formula.
 

Why is this weird? Well, we know that light is a wave; apart from what has been taught in
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Figure 4: Electron kinetic energy versus light frequency 

8.02 or 8.022, 8.03, and 8.033, the double-slit experiment seems fairly convincing! 

Figure 5: Schematic of double-slit interference and diffraction
 

One thing to ask is, where is the light when it hits the wall? In fact, it is everywhere, as it is
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not localized. But the intensity shows an interference pattern. This implies that amplitudes, 
rather than intensities, add. 

Let us try to investigate the fringe widths in the interference pattern further. Let us suppose 
that light from the two slits start in phase. If they coincide at a single point on the screen, 
they remain in phase if their path lengths differ by an integer multiple of the wavelength λ. 
If the horizontal distance D to the screen is much larger than the slit separation f, then the 
phase matching length should equal the path length difference for constructive interference 
to occur 

f sin(θ) = λn. 

If the beams meet on the screen a distance y from the slit positions projected onto the screen 
and if θ « 1, then 

fy ≈ Dλn. 

Figure 6: Geometry of double-slit interference and diffraction 

Now accounting for the shape of the pattern, the information from the screen is of the 
magnitude and phase of the light. θ depends on y because the path to y varies:  

f (y − 
2 
� )2 

f1(y) = D2 + (y − )2 ≈ D + ,
2 2D 

while 
� )2(y + 

f2(y) ≈ D + 2 . 
2D 

From this, 
2π 

θi(y) = fi(y). 
λ 

As for magnitudes, A1 = A2 = A0 because the slits are identical and pointlike. This means 

iθ1(y) iθ2(y)).A(y) = A0 · (e + e 
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The intensity, up to a constant ensuring the correct dimensions, is 

|A(y)|2 = 2A2
0 · (1 + cos(θ1(y) − θ2(y))), 

which reduces to 

|A(y)|2 ≈ 2A2
0 · (1 + cos( 

2πfy 
)). 

λD 
This yields maxima at 

fy = Dλn 

as expected. Note that maxima correspond to constructive interference, while minima cor­
respond to destructive interference. This comes from the fact that amplitudes add, and the 
intensity is the square of the amplitude. 

The point is that in 8.03, you did the double-slit experiment and saw the interference fringes. 
This implies that light is a wave, which nicely fits the Maxwell equations. By contrast, chunks 
should behave differently! 
Classically, particles sent through a double-slit screen onto another screen should hit the 
final screen at one localized point or the other, and intensities would sum directly with no 
interference terms. This seems to build credence for the idea that light is a wave and is not 
chunky. 

To recapitulate, 8.02 and 8.022 say that light is an electromagnetic wave. From 8.03, light 
interferes with itself, so light should be a smooth continuum. Yet from 8.04, if light is applied 
to a metal, it comes only in chunks! 

Experimental result #4: light comes in chunks!
 

Accompanying this is the fact that light has an energy and a momentum 

E = hν (0.3) 

p = hλ−1 . (0.4) 

That’s enough about light for now. What about atoms? Well, we are not as confident that 
they exist, so let us stick with electrons for now. While the properties of color and hardness 
in electrons are disturbing, we should be able to agree that if electrons are truly particles, 
they would be localized and would thus hit a screen in a slit experiment in exactly one spot. 
We can check this with a double-slit experiment. 

It turns out that electrons interfere like waves even with themselves! If they were really 
particles, they would have followed only one of two paths: the path from the top slit to the 
end, or the path from the bottom slit to the end. We could use a wall to check which one 
is happening. Yet this produces the exact same conundrum as for the boxes from before for 
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Figure 7: Classical particles in a double-slit experiment 

the exact same reasons. Hence, the electron must be taking a superposition of the possible 
paths. So the electron is neither strictly a particle nor strictly a wave, but is just an electron. 

But could we be a little more clever in trying to glean through which slit the electron passed? 
We could cheat by using very diffuse (low-energy) light. Examining one path would not be 
like blocking it, so there would be a mild deflection but the overall interference pattern 
should qualitatively be preserved. 

The problem with this is that light is quantized. Every collision imparts a discrete E = hν 
and p = hλ−1; low intensity simply means the collisions are rare. And if the energy and 
momentum are low, the wavelength, which becomes the resolution of the electron’s spatial 
location, becomes too large to remain meaningful. 

Hence, determining through which slit an electron passes does away with the interference
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pattern. This means that every force must be quantized like E = hν and p = hλ−1, or else 
the slit passage could be determined without messing with the interference pattern. 

But are electrons waves then? Davisson and Germer sent a beam of electrons into a crystal 
and found the phenomenon of Bragg scattering. The path length difference between one 
layer of the crystal and the next is 

Δf = 2f sin(θ) 

for a square crystal of length f. Constructive interference occurs when 

Δf = λn. 

This means 
n 

λ−1 = . 
2f sin(θ) 

Davisson and Germer also observed that 
√ √ 

n 2mqeV0 2mE p≈ = = . 
2f sin(θ) h h h 

Figure 8: Davisson and Germer crystal diffraction
 

Experimental result #5: electrons interfere and diffract! 

Accompanying this are the de Broglie relations 

E = hν 

p = hλ−1 . 

(0.5) 

(0.6) 



MIT OpenCourseWare
http://ocw.mit.edu

8.04 Quantum Physics I
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



